These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2456310)

  • 1. Death of the subcallosal glial sling is correlated with formation of the cavum septi pellucidi.
    Hankin MH; Schneider BF; Silver J
    J Comp Neurol; 1988 Jun; 272(2):191-202. PubMed ID: 2456310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure of the subcallosal sling to develop after embryonic X-irradiation is correlated with absence of the cavum septi.
    Schneider BF; Silver J
    J Comp Neurol; 1990 Sep; 299(4):462-9. PubMed ID: 2243161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways.
    Silver J; Lorenz SE; Wahlsten D; Coughlin J
    J Comp Neurol; 1982 Sep; 210(1):10-29. PubMed ID: 7130467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The early formation of the corpus callosum: a light and electron microscopic study in foetal and neonatal rats.
    Valentino KL; Jones EG
    J Neurocytol; 1982 Aug; 11(4):583-609. PubMed ID: 7131045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient cellular structures in developing corpus callosum of the human brain.
    Jovanov-Milosević N; Benjak V; Kostović I
    Coll Antropol; 2006 Jun; 30(2):375-81. PubMed ID: 16848154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of candidate genes at the corticoseptal boundary during development.
    Shen WB; Plachez C; Mongi AS; Richards LJ
    Gene Expr Patterns; 2006 Jun; 6(5):471-81. PubMed ID: 16458080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain.
    Silver J; Edwards MA; Levitt P
    J Comp Neurol; 1993 Feb; 328(3):415-36. PubMed ID: 8440789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges.
    Silver J; Ogawa MY
    Science; 1983 Jun; 220(4601):1067-9. PubMed ID: 6844928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of corpus callosum biometric measurements at 18 to 32 weeks' gestation by 3-dimensional sonography.
    Rizzo G; Pietrolucci ME; Capponi A; Arduini D
    J Ultrasound Med; 2011 Jan; 30(1):47-53. PubMed ID: 21193704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Histogenesis of the corpus callosum].
    Gelot A; Esperandieu O; Pompidou A
    Neurochirurgie; 1998 May; 44(1 Suppl):61-73. PubMed ID: 9757325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defects of the fetal forebrain in mice with hereditary agenesis of the corpus callosum.
    Wahlsten D
    J Comp Neurol; 1987 Aug; 262(2):227-41. PubMed ID: 3624553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectional distinction between callosal and subcortically projecting cortical neurons is determined prior to axon extension.
    Koester SE; O'Leary DD
    Dev Biol; 1993 Nov; 160(1):1-14. PubMed ID: 8224528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography of interhemispheric connections in neocortex of mice with congenital deficiencies of the callosal commissure.
    Olavarria J; Serra-Oller MM; Yee KT; Van Sluyters RC
    J Comp Neurol; 1988 Apr; 270(4):575-90. PubMed ID: 3372749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of intersecting CNS fiber tracts: the corpus callosum and its perforating fiber pathway.
    Hankin MH; Silver J
    J Comp Neurol; 1988 Jun; 272(2):177-90. PubMed ID: 3397407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain.
    Ren T; Anderson A; Shen WB; Huang H; Plachez C; Zhang J; Mori S; Kinsman SL; Richards LJ
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Feb; 288(2):191-204. PubMed ID: 16411247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology, molecular phenotypes and distribution of neurons in developing human corpus callosum.
    Jovanov-Milošević N; Petanjek Z; Petrović D; Judaš M; Kostović I
    Eur J Neurosci; 2010 Nov; 32(9):1423-32. PubMed ID: 20846339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation.
    Smith GM; Miller RH; Silver J
    J Comp Neurol; 1986 Sep; 251(1):23-43. PubMed ID: 3760257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation.
    Sánchez-Camacho C; Ortega JA; Ocaña I; Alcántara S; Bovolenta P
    Dev Neurobiol; 2011 May; 71(5):337-50. PubMed ID: 21485009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of prenatal gamma irradiation on the development of the corpus callosum of Swiss mice.
    Abreu-Villaça YY; Schmidt SL
    Int J Dev Neurosci; 1999 Nov; 17(7):693-704. PubMed ID: 10568686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound measurement of the fetal cavum septi pellucidi.
    Jou HJ; Shyu MK; Wu SC; Chen SM; Su CH; Hsieh FJ
    Ultrasound Obstet Gynecol; 1998 Dec; 12(6):419-21. PubMed ID: 9918090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.