BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24563461)

  • 1. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The GyrA-box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle.
    Lanz MA; Klostermeier D
    Nucleic Acids Res; 2012 Nov; 40(21):10893-903. PubMed ID: 22977179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage.
    Gubaev A; Klostermeier D
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14085-90. PubMed ID: 21817063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guiding strand passage: DNA-induced movement of the gyrase C-terminal domains defines an early step in the supercoiling cycle.
    Lanz MA; Klostermeier D
    Nucleic Acids Res; 2011 Dec; 39(22):9681-94. PubMed ID: 21880594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Two? On the Role of (A-)Symmetry in Negative Supercoiling of DNA by Gyrase.
    Klostermeier D
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29772727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction.
    Gubaev A; Hilbert M; Klostermeier D
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13278-83. PubMed ID: 19666507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity.
    Tretter EM; Berger JM
    J Biol Chem; 2012 May; 287(22):18636-44. PubMed ID: 22457353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance.
    Gross CH; Parsons JD; Grossman TH; Charifson PS; Bellon S; Jernee J; Dwyer M; Chambers SP; Markland W; Botfield M; Raybuck SA
    Antimicrob Agents Chemother; 2003 Mar; 47(3):1037-46. PubMed ID: 12604539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of the nucleotide cycle of B. subtilis DNA gyrase and its modulation by DNA.
    Göttler T; Klostermeier D
    J Mol Biol; 2007 Apr; 367(5):1392-404. PubMed ID: 17320901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The "GyrA-box" is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction.
    Kramlinger VM; Hiasa H
    J Biol Chem; 2006 Feb; 281(6):3738-42. PubMed ID: 16332690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the spectrum of conformational states of the DNA- and C-gates in Bacillus subtilis gyrase.
    Rudolph MG; Klostermeier D
    J Mol Biol; 2013 Aug; 425(15):2632-40. PubMed ID: 23602808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium ions are required for nucleotide-induced closure of gyrase N-gate.
    Gubaev A; Klostermeier D
    J Biol Chem; 2012 Mar; 287(14):10916-21. PubMed ID: 22343632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function.
    Schoeffler AJ; May AP; Berger JM
    Nucleic Acids Res; 2010 Nov; 38(21):7830-44. PubMed ID: 20675723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twisting of the DNA-binding surface by a beta-strand-bearing proline modulates DNA gyrase activity.
    Hsieh TJ; Yen TJ; Lin TS; Chang HT; Huang SY; Hsu CH; Farh L; Chan NL
    Nucleic Acids Res; 2010 Jul; 38(12):4173-81. PubMed ID: 20215433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA).
    Huang YY; Deng JY; Gu J; Zhang ZP; Maxwell A; Bi LJ; Chen YY; Zhou YF; Yu ZN; Zhang XE
    Nucleic Acids Res; 2006; 34(19):5650-9. PubMed ID: 17038336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome.
    Rovinskiy N; Agbleke AA; Chesnokova O; Pang Z; Higgins NP
    PLoS Genet; 2012; 8(8):e1002845. PubMed ID: 22916023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A superhelical spiral in the Escherichia coli DNA gyrase A C-terminal domain imparts unidirectional supercoiling bias.
    Ruthenburg AJ; Graybosch DM; Huetsch JC; Verdine GL
    J Biol Chem; 2005 Jul; 280(28):26177-84. PubMed ID: 15897198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs.
    Tretter EM; Lerman JC; Berger JM
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22055-9. PubMed ID: 21076033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal Propagation in the ATPase Domain of
    Kamsri B; Kamsri P; Punkvang A; Chimprasit A; Saparpakorn P; Hannongbua S; Spencer J; Oliveira ASF; Mulholland AJ; Pungpo P
    Biochemistry; 2024 Jun; 63(11):1493-1504. PubMed ID: 38742407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.