These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24563551)

  • 1. On the mechanics of growing thin biological membranes.
    Rausch MK; Kuhl E
    J Mech Phys Solids; 2014 Feb; 63():128-140. PubMed ID: 24563551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth on demand: reviewing the mechanobiology of stretched skin.
    Zöllner AM; Holland MA; Honda KS; Gosain AK; Kuhl E
    J Mech Behav Biomed Mater; 2013 Dec; 28():495-509. PubMed ID: 23623569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growing matter: a review of growth in living systems.
    Kuhl E
    J Mech Behav Biomed Mater; 2014 Jan; 29():529-43. PubMed ID: 24239171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the biomechanics and mechanobiology of growing skin.
    Zöllner AM; Buganza Tepole A; Kuhl E
    J Theor Biol; 2012 Mar; 297():166-75. PubMed ID: 22227432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs).
    Nolan DR; Lally C; McGarry JP
    J Mech Behav Biomed Mater; 2022 Feb; 126():104940. PubMed ID: 34923365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanics of thin films and growing surfaces.
    Holland MA; Kosmata T; Goriely A; Kuhl E
    Math Mech Solids; 2013 Aug; 18(6):561-575. PubMed ID: 36466793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model.
    Weinberg EJ; Kaazempur Mofrad MR
    J Biomech; 2007; 40(3):705-11. PubMed ID: 16574127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the effect of prestrain and residual stress in thin biological membranes.
    Rausch MK; Kuhl E
    J Mech Phys Solids; 2013 Sep; 61(9):1955-1969. PubMed ID: 23976792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanics of continua with boundary energies and growing surfaces.
    Papastavrou A; Steinmann P; Kuhl E
    J Mech Phys Solids; 2013 Jun; 61(6):1446-1463. PubMed ID: 23606760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes.
    Dharmavaram S; Wan X; Perotti LE
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic generation of user material subroutines for biomechanical growth analysis.
    Young JM; Yao J; Ramasubramanian A; Taber LA; Perucchio R
    J Biomech Eng; 2010 Oct; 132(10):104505. PubMed ID: 20887023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling.
    Guha I; Zhang X; Rajapakse CS; Chang G; Saha PK
    Med Phys; 2022 Jun; 49(6):3886-3899. PubMed ID: 35319784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials.
    Evans SL
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):319-32. PubMed ID: 19199169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrinkle-induced tear in the mitral valve leaflet tissue: a computational model.
    Goode D; Kermen E; Mohammadi H
    J Med Eng Technol; 2020 Aug; 44(6):346-353. PubMed ID: 32762571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.