These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24563551)

  • 41. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering.
    Bai Y; Kaiser NJ; Coulombe KLK; Srivastava V
    J Mech Behav Biomed Mater; 2021 Sep; 121():104627. PubMed ID: 34130078
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computer modeling tools to understand the causes of preterm birth.
    Westervelt AR; Myers KM
    Semin Perinatol; 2017 Dec; 41(8):485-492. PubMed ID: 28958628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
    Stella JA; Liao J; Sacks MS
    J Biomech; 2007; 40(14):3169-77. PubMed ID: 17570376
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neochord placement versus triangular resection in mitral valve repair: A finite element model.
    Morgan AE; Pantoja JL; Grossi EA; Ge L; Weinsaft JW; Ratcliffe MB
    J Surg Res; 2016 Nov; 206(1):98-105. PubMed ID: 27916382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Personalized Computational Modeling of Mitral Valve Prolapse: Virtual Leaflet Resection.
    Rim Y; Choi A; McPherson DD; Kim H
    PLoS One; 2015; 10(6):e0130906. PubMed ID: 26103002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament.
    Xie F; Yang L; Guo L; Wang ZJ; Dai G
    J Biomech Eng; 2009 Dec; 131(12):121007. PubMed ID: 20524730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain.
    Rausch MK; Famaey N; Shultz TO; Bothe W; Miller DC; Kuhl E
    Biomech Model Mechanobiol; 2013 Oct; 12(5):1053-71. PubMed ID: 23263365
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.
    Sakamoto Y; Buchanan RM; Sacks MS
    J Mech Behav Biomed Mater; 2016 Feb; 54():244-58. PubMed ID: 26476967
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluid-structure interaction models of the mitral valve: function in normal and pathological states.
    Kunzelman KS; Einstein DR; Cochran RP
    Philos Trans R Soc Lond B Biol Sci; 2007 Aug; 362(1484):1393-406. PubMed ID: 17581809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.
    Abbasi M; Barakat MS; Vahidkhah K; Azadani AN
    J Mech Behav Biomed Mater; 2016 Sep; 62():33-44. PubMed ID: 27173827
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
    Grosse IR; Dumont ER; Coletta C; Tolleson A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Living Heart Project: A robust and integrative simulator for human heart function.
    Baillargeon B; Rebelo N; Fox DD; Taylor RL; Kuhl E
    Eur J Mech A Solids; 2014 Nov; 48():38-47. PubMed ID: 25267880
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manufacturing, Characterisation and Mechanical Analysis of Polyacrylonitrile Membranes.
    Tüfekci M; Durak SG; Pir İ; Acar TO; Demirkol GT; Tüfekci N
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33081085
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptive Finite Element Model for Simulating Crack Growth in the Presence of Holes.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576448
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Growing skin: A computational model for skin expansion in reconstructive surgery.
    Tepole AB; Ploch CJ; Wong J; Gosain AK; Kuhl E
    J Mech Phys Solids; 2011 Oct; 59(10):2177-2190. PubMed ID: 22081726
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational modeling: an alternative approach for investigating patellofemoral mechanics.
    Elias JJ; Cosgarea AJ
    Sports Med Arthrosc Rev; 2007 Jun; 15(2):89-94. PubMed ID: 17505324
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A projection method to extract biological membrane models from 3D material models.
    Roohbakhshan F; Duong TX; Sauer RA
    J Mech Behav Biomed Mater; 2016 May; 58():90-104. PubMed ID: 26455810
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.