BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24563704)

  • 1. Mind the gut: Dietary impact on germline stem cells and fertility.
    Gracida X; Eckmann CR
    Commun Integr Biol; 2013 Nov; 6(6):e26004. PubMed ID: 24563704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans.
    Gracida X; Eckmann CR
    Curr Biol; 2013 Apr; 23(7):607-13. PubMed ID: 23499532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans.
    Goudeau J; Bellemin S; Toselli-Mollereau E; Shamalnasab M; Chen Y; Aguilaniu H
    PLoS Biol; 2011 Mar; 9(3):e1000599. PubMed ID: 21423649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations.
    Ratnappan R; Ward JD; Yamamoto KR; Ghazi A
    Worm; 2016; 5(1):e1151609. PubMed ID: 27073739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Caenorhabditis elegans HNF4alpha Homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase.
    Hahn-Windgassen A; Van Gilst MR
    PLoS Genet; 2009 Jul; 5(7):e1000553. PubMed ID: 19668342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Germline signals deploy NHR-49 to modulate fatty-acid β-oxidation and desaturation in somatic tissues of C. elegans.
    Ratnappan R; Amrit FR; Chen SW; Gill H; Holden K; Ward J; Yamamoto KR; Olsen CP; Ghazi A
    PLoS Genet; 2014 Dec; 10(12):e1004829. PubMed ID: 25474470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory regulation of the C. elegans germline through TGF-β-dependent signaling in the niche.
    Dalfó D; Michaelson D; Hubbard EJ
    Curr Biol; 2012 Apr; 22(8):712-9. PubMed ID: 22483938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease.
    Makki K; Deehan EC; Walter J; Bäckhed F
    Cell Host Microbe; 2018 Jun; 23(6):705-715. PubMed ID: 29902436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Starvation protects germline stem cells and extends reproductive longevity in C. elegans.
    Angelo G; Van Gilst MR
    Science; 2009 Nov; 326(5955):954-8. PubMed ID: 19713489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary Influences on the Microbiota-Gut-Brain Axis.
    Barber TM; Valsamakis G; Mastorakos G; Hanson P; Kyrou I; Randeva HS; Weickert MO
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33800707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of nuclear receptor NHR-64 in fat storage regulation in Caenorhabditis elegans.
    Liang B; Ferguson K; Kadyk L; Watts JL
    PLoS One; 2010 Mar; 5(3):e9869. PubMed ID: 20360843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic identification of germline proteins in Caenorhabditis elegans.
    Turner BE; Basecke SM; Bazan GC; Dodge ES; Haire CM; Heussman DJ; Johnson CL; Mukai CK; Naccarati AM; Norton SJ; Sato JR; Talavera CO; Wade MV; Hillers KJ
    Worm; 2015; 4(1):e1008903. PubMed ID: 26435885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern Population.
    García-Vega ÁS; Corrales-Agudelo V; Reyes A; Escobar JS
    Nutrients; 2020 Sep; 12(10):. PubMed ID: 32992776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NHR-40, a Caenorhabditis elegans supplementary nuclear receptor, regulates embryonic and early larval development.
    Brozová E; Simecková K; Kostrouch Z; Rall JE; Kostrouchová M
    Mech Dev; 2006 Sep; 123(9):689-701. PubMed ID: 16920335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells.
    Korta DZ; Tuck S; Hubbard EJ
    Development; 2012 Mar; 139(5):859-70. PubMed ID: 22278922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut.
    Wong S; Stephens WZ; Burns AR; Stagaman K; David LA; Bohannan BJ; Guillemin K; Rawls JF
    mBio; 2015 Sep; 6(5):e00687-15. PubMed ID: 26419876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Understanding of Dietary Effects on C. elegans Physiology.
    Zhou JJ; Chun L; Liu JF
    Curr Med Sci; 2019 Oct; 39(5):679-684. PubMed ID: 31612382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans.
    Amrit FR; Steenkiste EM; Ratnappan R; Chen SW; McClendon TB; Kostka D; Yanowitz J; Olsen CP; Ghazi A
    PLoS Genet; 2016 Feb; 12(2):e1005788. PubMed ID: 26862916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision Nutrition and the Microbiome, Part I: Current State of the Science.
    Mills S; Stanton C; Lane JA; Smith GJ; Ross RP
    Nutrients; 2019 Apr; 11(4):. PubMed ID: 31022973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome.
    De Angelis M; Garruti G; Minervini F; Bonfrate L; Portincasa P; Gobbetti M
    Curr Med Chem; 2019; 26(19):3567-3583. PubMed ID: 28462705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.