BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24564165)

  • 1. [Application of lysosomal detection in marine pollution monitoring: research progress].
    Weng YZ; Fang YQ; Zhang YS
    Ying Yong Sheng Tai Xue Bao; 2013 Nov; 24(11):3318-24. PubMed ID: 24564165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and morphological changes of lysosomes as prognostic biomarkers of toxic liver injury in a marine flatfish (Platichthys flesus (L.)).
    Köhler A; Wahl E; Söffker K
    Environ Toxicol Chem; 2002 Nov; 21(11):2434-44. PubMed ID: 12389924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysosomes and autophagy in aquatic animals.
    Moore MN; Kohler A; Lowe D; Viarengo A
    Methods Enzymol; 2008; 451():581-620. PubMed ID: 19185741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysosomal membrane stability of the mussel, Mytilus galloprovincialis (L.), as a biomarker of tributyltin exposure.
    Okoro HK; Snyman RG; Fatoki OS; Adekola FA; Ximba BJ; Slabber MY
    Bull Environ Contam Toxicol; 2015 May; 94(5):609-13. PubMed ID: 25820433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutral red retention time assay in determination of toxicity of nanoparticles.
    Hu W; Culloty S; Darmody G; Lynch S; Davenport J; Ramirez-Garcia S; Dawson K; Lynch I; Doyle H; Sheehan D
    Mar Environ Res; 2015 Oct; 111():158-61. PubMed ID: 26065811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neutral red lysosomal retention assay and Comet assay on haemolymph cells from mussels (Mytilus edulis) and fish (Symphodus melops) exposed to styrene.
    Mamaca E; Bechmann RK; Torgrimsen S; Aas E; Bjørnstad A; Baussant T; Floch SL
    Aquat Toxicol; 2005 Nov; 75(3):191-201. PubMed ID: 16221498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysosomal and autophagic reactions as predictive indicators of environmental impact in aquatic animals.
    Moore MN; Allen JI; McVeigh A; Shaw J
    Autophagy; 2006; 2(3):217-20. PubMed ID: 16874099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Lysosome of Eisenia fetida as biomarker of soil pollution].
    Xiao N; Liu X; Li W; Ge F
    Ying Yong Sheng Tai Xue Bao; 2006 Mar; 17(3):516-9. PubMed ID: 16724754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysosomal responses in the digestive gland of the freshwater mussel, Dreissena polymorpha, experimentally exposed to cadmium.
    Giambérini L; Cajaraville MP
    Environ Res; 2005 Jun; 98(2):210-4. PubMed ID: 15820727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysosomal and tissue-level biomarkers in mussels cross-transplanted among four estuaries with different pollution levels.
    Lekube X; Izagirre U; Soto M; Marigómez I
    Sci Total Environ; 2014 Feb; 472():36-48. PubMed ID: 24291131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysosomal perturbations in fish liver as indicators for toxic effects of environmental pollution.
    Köhler A
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 100(1-2):123-7. PubMed ID: 1677841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index.
    Izagirre U; Marigómez I
    Environ Pollut; 2009 May; 157(5):1544-53. PubMed ID: 19208445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application and evaluation of the neutral red retention (NRR) assay for lysosomal stability in mussel populations along the Iberian Mediterranean coast.
    Martínez-Gómez C; Benedicto J; Campillo JA; Moore M
    J Environ Monit; 2008 Apr; 10(4):490-9. PubMed ID: 18385870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of cytochemical procedures to estimate lysosomal biomarkers in mussel digestive cells.
    Marigómez I; Lekube X; Cajaraville MP; Domouhtsidou G; Dimitriadis V
    Aquat Toxicol; 2005 Oct; 75(1):86-95. PubMed ID: 16102854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring lysosomal stability as an effective tool for marine coastal environmental monitoring.
    Castro M; Santos MM; Monteiro NM; Vieira N
    Mar Environ Res; 2004; 58(2-5):741-5. PubMed ID: 15178108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of xenobiotic compounds on the cell activities of Euplotes crassus, a single-cell eukaryotic test organism for the study of the pollution of marine sediments.
    Trielli F; Amaroli A; Sifredi F; Marchi B; Falugi C; Corrado MU
    Aquat Toxicol; 2007 Aug; 83(4):272-83. PubMed ID: 17582519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple pollution biomarker application on tissues of Eobania vermiculata during two periods characterized by augmented and reduced snail activity.
    Itziou A; Dimitriadis VK
    Ecotoxicol Environ Saf; 2012 Dec; 86():13-22. PubMed ID: 23020987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Marine environmental assessment approaches based on biomarker index: a review].
    Meng FP; Yang FF; Cheng FL
    Ying Yong Sheng Tai Xue Bao; 2012 Apr; 23(4):1128-36. PubMed ID: 22803485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-course study of the early lysosomal responses to pollutants in mussel digestive cells using acid phosphatase as lysosomal marker enzyme.
    Izagirre U; Ruiz P; Marigómez I
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 May; 149(4):587-97. PubMed ID: 19174192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysosomal membrane stability, phagocytosis and tolerance to emersion in the mussel Perna viridis (Bivalvia: Mytilidae) following exposure to acute, sublethal, copper.
    Nicholson S
    Chemosphere; 2003 Aug; 52(7):1147-51. PubMed ID: 12820995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.