These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24564237)

  • 1. Coarse-grain model for natural cellulose fibrils in explicit water.
    Srinivas G; Cheng X; Smith JC
    J Phys Chem B; 2014 Mar; 118(11):3026-34. PubMed ID: 24564237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Solvent-Free Coarse Grain Model for Crystalline and Amorphous Cellulose Fibrils.
    Srinivas G; Cheng X; Smith JC
    J Chem Theory Comput; 2011 Aug; 7(8):2539-48. PubMed ID: 26606627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REACH coarse-grained simulation of a cellulose fiber.
    Glass DC; Moritsugu K; Cheng X; Smith JC
    Biomacromolecules; 2012 Sep; 13(9):2634-44. PubMed ID: 22937726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained model for the interconversion between native and liquid ammonia-treated crystalline cellulose.
    Bellesia G; Chundawat SP; Langan P; Redondo A; Dale BE; Gnanakaran S
    J Phys Chem B; 2012 Jul; 116(28):8031-7. PubMed ID: 22712833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling dipeptides: conformational sampling in solvent-free coarse-grained simulation.
    Villa A; Peter C; van der Vegt NF
    Phys Chem Chem Phys; 2009 Mar; 11(12):2077-86. PubMed ID: 19280018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive resolution simulation of an atomistic protein in MARTINI water.
    Zavadlav J; Melo MN; Marrink SJ; Praprotnik M
    J Chem Phys; 2014 Feb; 140(5):054114. PubMed ID: 24511929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate.
    Chundawat SP; Bellesia G; Uppugundla N; da Costa Sousa L; Gao D; Cheh AM; Agarwal UP; Bianchetti CM; Phillips GN; Langan P; Balan V; Gnanakaran S; Dale BE
    J Am Chem Soc; 2011 Jul; 133(29):11163-74. PubMed ID: 21661764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Self-Assembly and Molecular Packing in Methylcellulose Aqueous Solutions Using Multiscale Modeling and Simulations.
    Wu Z; Collins AM; Jayaraman A
    Biomacromolecules; 2024 Mar; 25(3):1682-1695. PubMed ID: 38417021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CUMULUS coarse graining method: transferable potentials for water and solutes.
    van Hoof B; Markvoort AJ; van Santen RA; Hilbers PA
    J Phys Chem B; 2011 Aug; 115(33):10001-12. PubMed ID: 21740053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coarse-grain force-field for xylan and its interaction with cellulose.
    Li L; Pérré P; Frank X; Mazeau K
    Carbohydr Polym; 2015; 127():438-50. PubMed ID: 25965503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation.
    Lindner B; Petridis L; Schulz R; Smith JC
    Biomacromolecules; 2013 Oct; 14(10):3390-8. PubMed ID: 23980921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis.
    Zhao Z; Shklyaev OE; Nili A; Mohamed MN; Kubicki JD; Crespi VH; Zhong L
    J Phys Chem A; 2013 Mar; 117(12):2580-9. PubMed ID: 23418823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer matrix approach to the hydrogen-bonding in cellulose Iα fibrils describes the recalcitrance to thermal deconstruction.
    Klein HC; Cheng X; Smith JC; Shen T
    J Chem Phys; 2011 Aug; 135(8):085106. PubMed ID: 21895224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation.
    Zhang Q; Brumer H; Ågren H; Tu Y
    Carbohydr Res; 2011 Nov; 346(16):2595-602. PubMed ID: 21974911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle-based multiscale coarse graining with density-dependent potentials: application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine).
    Izvekov S; Chung PW; Rice BM
    J Chem Phys; 2011 Jul; 135(4):044112. PubMed ID: 21806095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems.
    Parthasarathi R; Balamurugan K; Shi J; Subramanian V; Simmons BA; Singh S
    J Phys Chem B; 2015 Nov; 119(45):14339-49. PubMed ID: 26407132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The soft-confined method for creating molecular models of amorphous polymer surfaces.
    Liu H; Li Y; Krause WE; Rojas OJ; Pasquinelli MA
    J Phys Chem B; 2012 Feb; 116(5):1570-8. PubMed ID: 22292494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.