BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24564248)

  • 1. Room-temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water.
    Rai RK; Mahata A; Mukhopadhyay S; Gupta S; Li PZ; Nguyen KT; Zhao Y; Pathak B; Singh SK
    Inorg Chem; 2014 Mar; 53(6):2904-9. PubMed ID: 24564248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds.
    Sinha T; Ahmaruzzaman M; Sil AK; Bhattacharjee A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():413-23. PubMed ID: 24835945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water.
    Dey R; Mukherjee N; Ahammed S; Ranu BC
    Chem Commun (Camb); 2012 Aug; 48(64):7982-4. PubMed ID: 22531391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-free transfer hydrogenation of nitroarenes in water with vasicine: revelation of organocatalytic facet of an abundant alkaloid.
    Sharma S; Kumar M; Kumar V; Kumar N
    J Org Chem; 2014 Oct; 79(19):9433-9. PubMed ID: 25215900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A metal-organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds.
    Li Y; Zhou YX; Ma X; Jiang HL
    Chem Commun (Camb); 2016 Mar; 52(22):4199-202. PubMed ID: 26908070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pd-catalyzed silicon hydride reductions of aromatic and aliphatic nitro groups.
    Rahaim RJ; Maleczka RE
    Org Lett; 2005 Oct; 7(22):5087-90. PubMed ID: 16235964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly chemo- and regioselective reduction of aromatic nitro compounds using the system silane/oxo-rhenium complexes.
    de Noronha RG; Romão CC; Fernandes AC
    J Org Chem; 2009 Sep; 74(18):6960-4. PubMed ID: 19685891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel strategy for the preparation of arylhydroxylamines: chemoselective reduction of aromatic nitro compounds using bakers' yeast.
    Li F; Cui J; Qian X; Zhang R
    Chem Commun (Camb); 2004 Oct; (20):2338-9. PubMed ID: 15490009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of Metal Nanoparticles within Metal-Organic Frameworks for the Reduction of Nitro Compounds.
    Navalón S; Álvaro M; Dhakshinamoorthy A; García H
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31443444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective hydrogenation of nitro compounds with supported gold catalysts.
    Corma A; Serna P
    Science; 2006 Jul; 313(5785):332-4. PubMed ID: 16857934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic reactions in water: a distinct novel approach for an efficient synthesis of alpha-amino phosphonates starting directly from nitro compounds.
    Das B; Satyalakshmi G; Suneel K; Damodar K
    J Org Chem; 2009 Nov; 74(21):8400-2. PubMed ID: 19775086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications.
    Nadagouda MN; Varma RS
    Biomacromolecules; 2007 Sep; 8(9):2762-7. PubMed ID: 17665946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis.
    Wang H; Zhou W; Liu JX; Si R; Sun G; Zhong MQ; Su HY; Zhao HB; Rodriguez JA; Pennycook SJ; Idrobo JC; Li WX; Kou Y; Ma D
    J Am Chem Soc; 2013 Mar; 135(10):4149-58. PubMed ID: 23428163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile, water-based synthesis of highly branched nanostructures of silver.
    Wang Y; Camargo PH; Skrabalak SE; Gu H; Xia Y
    Langmuir; 2008 Oct; 24(20):12042-6. PubMed ID: 18817421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base.
    Wienhöfer G; Sorribes I; Boddien A; Westerhaus F; Junge K; Junge H; Llusar R; Beller M
    J Am Chem Soc; 2011 Aug; 133(32):12875-9. PubMed ID: 21740024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Ni-Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine.
    Wojcieszak R; Monteverdi S; Ghanbaja J; Bettahar MM
    J Colloid Interface Sci; 2008 Jan; 317(1):166-74. PubMed ID: 17927996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisite solid catalyst for cascade reactions: the direct synthesis of benzodiazepines from nitro compounds.
    Climent MJ; Corma A; Iborra S; Santos LL
    Chemistry; 2009 Sep; 15(35):8834-41. PubMed ID: 19621393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles.
    Gálvez N; Valero E; Ceolin M; Trasobares S; López-Haro M; Calvino JJ; Domínguez-Vera JM
    Inorg Chem; 2010 Feb; 49(4):1705-11. PubMed ID: 20067250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Metal-Doped Fungi-Based Biomaterial for Advanced Electrocatalysis.
    Krejčová L; Leonhardt T; Novotný F; Bartůněk V; Mazánek V; Sedmidubský D; Sofer Z; Pumera M
    Chemistry; 2019 Mar; 25(15):3828-3834. PubMed ID: 30600842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.