These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24564248)

  • 21. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation.
    Liu F; Lee JY; Zhou WJ
    Small; 2006 Jan; 2(1):121-8. PubMed ID: 17193567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen.
    Yang W; Grochowski MR; Sen A
    ChemSusChem; 2012 Jul; 5(7):1218-22. PubMed ID: 22492614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bimetallic Ni-Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage.
    Singh SK; Xu Q
    Inorg Chem; 2010 Jul; 49(13):6148-52. PubMed ID: 20518491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrathin platinum nanowire catalysts for direct C-N coupling of carbonyls with aromatic nitro compounds under 1 bar of hydrogen.
    Hu L; Cao X; Ge D; Hong H; Guo Z; Chen L; Sun X; Tang J; Zheng J; Lu J; Gu H
    Chemistry; 2011 Dec; 17(50):14283-7. PubMed ID: 22076951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progress in base-metal water oxidation catalysis.
    Parent AR; Sakai K
    ChemSusChem; 2014 Aug; 7(8):2070-80. PubMed ID: 25066264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics.
    Corma A; Serna P; Concepción P; Calvino JJ
    J Am Chem Soc; 2008 Jul; 130(27):8748-53. PubMed ID: 18597431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium.
    Dinda E; Si S; Kotal A; Mandal TK
    Chemistry; 2008; 14(18):5528-37. PubMed ID: 18470852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient and highly selective iron-catalyzed reduction of nitroarenes.
    Jagadeesh RV; Wienhöfer G; Westerhaus FA; Surkus AE; Pohl MM; Junge H; Junge K; Beller M
    Chem Commun (Camb); 2011 Oct; 47(39):10972-4. PubMed ID: 21897952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective Reduction of Nitro Compounds by Organosilanes Catalyzed by a Zirconium Metal-Organic Framework Supported Salicylaldimine-Cobalt(II) Complex.
    Akhtar N; Chauhan M; Rana B; Thadhani C; Kalita R; Begum W; Ghosh B; Manna K
    Chempluschem; 2024 Apr; 89(4):e202300520. PubMed ID: 37930953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of graphene-supported noble metal hybrid nanostructures and their applications as advanced electrocatalysts for fuel cells.
    Zhu C; Dong S
    Nanoscale; 2013 Nov; 5(22):10765-75. PubMed ID: 24060985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalytic reduction of NO pollutant using an optical-fibre photoreactor at room temperature.
    Yu YH; Su IH; Wu JC
    Environ Technol; 2010 Dec; 31(13):1449-58. PubMed ID: 21214004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures.
    Wee TL; Sherman BD; Gust D; Moore AL; Moore TA; Liu Y; Scaiano JC
    J Am Chem Soc; 2011 Oct; 133(42):16742-5. PubMed ID: 21942296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications.
    Wang G; Ling Y; Li Y
    Nanoscale; 2012 Nov; 4(21):6682-91. PubMed ID: 23026891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chelation-mediated aqueous synthesis of metal oxyhydroxide and oxide nanostructures: combination of ligand-controlled oxidation and ligand-cooperative morphogenesis.
    Oaki Y; Imai H
    Chemistry; 2007; 13(30):8564-71. PubMed ID: 17659662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly chemoselective reduction of aromatic nitro compounds to the corresponding hydroxylamines catalysed by plant cells from a grape (Vitis vinifera L.).
    Li F; Cui J; Qian X; Zhang R; Xiao Y
    Chem Commun (Camb); 2005 Apr; (14):1901-3. PubMed ID: 15795781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient catalysts for the hydrogenation of nitro-substituted aromatics.
    Raja R; Golovko VB; Thomas JM; Berenguer-Murcia A; Zhou W; Xie S; Johnson BF
    Chem Commun (Camb); 2005 Apr; (15):2026-8. PubMed ID: 15834494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilization of nanofibrous metal oxides on microfibers: a macrostructured catalyst system functionalized with nanoscale fibrous metal oxides.
    Ogihara H; Sadakane M; Wu Q; Nodasaka Y; Ueda W
    Chem Commun (Camb); 2007 Oct; (39):4047-9. PubMed ID: 17912411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable synthesis of metal-graphene complex nanostructures and their catalytic ability for solvent-free cyclohexene oxidation in air.
    Huang H; Zhang H; Ma Z; Liu Y; Ming H; Li H; Kang Z
    Nanoscale; 2012 Aug; 4(16):4964-7. PubMed ID: 22695820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol.
    Zhang W; Tan F; Wang W; Qiu X; Qiao X; Chen J
    J Hazard Mater; 2012 May; 217-218():36-42. PubMed ID: 22459973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.