BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 24564277)

  • 1. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-type specificity of ChIP-predicted transcription factor binding sites.
    Håndstad T; Rye M; Močnik R; Drabløs F; Sætrom P
    BMC Genomics; 2012 Aug; 13():372. PubMed ID: 22863112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved role for transcription factor sumoylation in binding-site selection.
    Rosonina E
    Curr Genet; 2019 Dec; 65(6):1307-1312. PubMed ID: 31093693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DAP-Seq Identification of Transcription Factor-Binding Sites in Potato.
    Franco-Zorrilla JM; Prat S
    Methods Mol Biol; 2021; 2354():123-142. PubMed ID: 34448158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters.
    Sri Theivakadadcham VS; Bergey BG; Rosonina E
    PLoS Genet; 2019 Feb; 15(2):e1007991. PubMed ID: 30763307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.
    Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z
    Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the detection and refinement of transcription factor binding sites using ChIP-Seq data.
    Hu M; Yu J; Taylor JM; Chinnaiyan AM; Qin ZS
    Nucleic Acids Res; 2010 Apr; 38(7):2154-67. PubMed ID: 20056654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TICA: Transcriptional Interaction and Coregulation Analyzer.
    Perna S; Pinoli P; Ceri S; Wong L
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):342-353. PubMed ID: 30578913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HiChIP: a high-throughput pipeline for integrative analysis of ChIP-Seq data.
    Yan H; Evans J; Kalmbach M; Moore R; Middha S; Luban S; Wang L; Bhagwate A; Li Y; Sun Z; Chen X; Kocher JP
    BMC Bioinformatics; 2014 Aug; 15(1):280. PubMed ID: 25128017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChIPSummitDB: a ChIP-seq-based database of human transcription factor binding sites and the topological arrangements of the proteins bound to them.
    Czipa E; Schiller M; Nagy T; Kontra L; Steiner L; Koller J; Pálné-Szén O; Barta E
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 31942977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data.
    Levitsky VG; Kulakovskiy IV; Ershov NI; Oshchepkov DY; Makeev VJ; Hodgman TC; Merkulova TI
    BMC Genomics; 2014 Jan; 15(1):80. PubMed ID: 24472686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.