These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24564284)

  • 1. Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release.
    Zhu S; Li T
    ACS Nano; 2014 Mar; 8(3):2864-72. PubMed ID: 24564284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable hydrogenation of graphene for novel nanocages.
    Zhang L; Zeng X; Wang X
    Sci Rep; 2013 Nov; 3():3162. PubMed ID: 24196408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically precise, custom-design origami graphene nanostructures.
    Chen H; Zhang XL; Zhang YY; Wang D; Bao DL; Que Y; Xiao W; Du S; Ouyang M; Pantelides ST; Gao HJ
    Science; 2019 Sep; 365(6457):1036-1040. PubMed ID: 31488691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices.
    Mu J; Hou C; Wang H; Li Y; Zhang Q; Zhu M
    Sci Adv; 2015 Nov; 1(10):e1500533. PubMed ID: 26601135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of graphene for efficient energy conversion and storage.
    Dai L
    Acc Chem Res; 2013 Jan; 46(1):31-42. PubMed ID: 23030244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale lithography on monolayer graphene using hydrogenation and oxidation.
    Byun IS; Yoon D; Choi JS; Hwang I; Lee DH; Lee MJ; Kawai T; Son YW; Jia Q; Cheong H; Park BH
    ACS Nano; 2011 Aug; 5(8):6417-24. PubMed ID: 21777004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene.
    Ao ZM; Hernández-Nieves AD; Peeters FM; Li S
    Phys Chem Chem Phys; 2012 Jan; 14(4):1463-7. PubMed ID: 22159075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar Polyolefin Nanostripes: Perhydrogenated Graphene.
    Bouša D; Huber Š; Sedmidubský D; Pumera M; Sofer Z
    Chemistry; 2017 Sep; 23(49):11961-11968. PubMed ID: 28639289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex three-dimensional graphene structures driven by surface functionalization.
    Ho DT; Ho VH; Babar V; Kim SY; Schwingenschlögl U
    Nanoscale; 2020 May; 12(18):10172-10179. PubMed ID: 32352475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis.
    Chen L; Hernandez Y; Feng X; Müllen K
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7640-54. PubMed ID: 22777811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Origami-Enabled Plasmonic Sensing.
    Dass M; Gür FN; Kołątaj K; Urban MJ; Liedl T
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(11):5969-5981. PubMed ID: 33828635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Atomic Layer Functionalization in Building Scalable Bottom-Up Assembly of Ultra-Low Density Multifunctional Three-Dimensional Nanostructures.
    Owuor PS; Tsafack T; Hwang HY; Park OK; Ozden S; Bhowmick S; Syed Amanulla SA; Vajtai R; Lou J; Tiwary CS; Ajayan PM
    ACS Nano; 2017 Jan; 11(1):806-813. PubMed ID: 27977930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant plasmene nanosheets, nanoribbons, and origami.
    Si KJ; Sikdar D; Chen Y; Eftekhari F; Xu Z; Tang Y; Xiong W; Guo P; Zhang S; Lu Y; Bao Q; Zhu W; Premaratne M; Cheng W
    ACS Nano; 2014 Nov; 8(11):11086-93. PubMed ID: 25265019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayers.
    Gao D; Lin MF; Xiong J; Li S; Lou SN; Liu Y; Ciou JH; Zhou X; Lee PS
    Nanoscale Horiz; 2020 Mar; 5(4):730-738. PubMed ID: 32065179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular threading and tunable molecular recognition on DNA origami nanostructures.
    Wu N; Czajkowsky DM; Zhang J; Qu J; Ye M; Zeng D; Zhou X; Hu J; Shao Z; Li B; Fan C
    J Am Chem Soc; 2013 Aug; 135(33):12172-5. PubMed ID: 23924191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent electron transfer chemistry of graphene with diazonium salts.
    Paulus GL; Wang QH; Strano MS
    Acc Chem Res; 2013 Jan; 46(1):160-70. PubMed ID: 22946516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanoscroll from C4H/C4F-type graphene superlattice: MD and MM simulation insights.
    Liu Z; Xue Q; Tao Y; Li X; Wu T; Jin Y; Zhang Z
    Phys Chem Chem Phys; 2015 Feb; 17(5):3441-50. PubMed ID: 25531924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient coupling of nanoparticles to electrochemically exfoliated graphene.
    Wei W; Wang G; Yang S; Feng X; Müllen K
    J Am Chem Soc; 2015 Apr; 137(16):5576-81. PubMed ID: 25849066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.