These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 24564390)

  • 1. Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices.
    Wischke C; Lendlein A
    Langmuir; 2014 Mar; 30(10):2820-7. PubMed ID: 24564390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatically Programmable Shape-Memory Polymers Based on Asymmetric Swelling of Bilayer Structures.
    Tang J; Zhou Y; Wan L; Huang F
    Macromol Rapid Commun; 2018 May; 39(9):e1800039. PubMed ID: 29517176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network.
    Defize T; Riva R; Raquez JM; Dubois P; Jérôme C; Alexandre M
    Macromol Rapid Commun; 2011 Aug; 32(16):1264-9. PubMed ID: 21692124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.
    Woodard LN; Page VM; Kmetz KT; Grunlan MA
    Macromol Rapid Commun; 2016 Dec; 37(23):1972-1977. PubMed ID: 27774684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medical applications of shape memory polymers.
    Sokolowski W; Metcalfe A; Hayashi S; Yahia L; Raymond J
    Biomed Mater; 2007 Mar; 2(1):S23-7. PubMed ID: 18458416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel biodegradable shape memory material based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone).
    Luo H; Liu Y; Yu Z; Zhang S; Li B
    Biomacromolecules; 2008 Oct; 9(10):2573-7. PubMed ID: 18798668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upscaling the synthesis of biodegradable multiblock copolymers capable of a shape-memory effect.
    Zotzmann J; Ziegler HJ; Behl M; Zierke M; Radke W; Lendlein A
    J Mater Sci Mater Med; 2011 Oct; 22(10):2147-54. PubMed ID: 21833607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity.
    Yu X; Zhou S; Zheng X; Guo T; Xiao Y; Song B
    Nanotechnology; 2009 Jun; 20(23):235702. PubMed ID: 19451683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inductively heated shape memory polymer for the magnetic actuation of medical devices.
    Buckley PR; McKinley GH; Wilson TS; Small W; Benett WJ; Bearinger JP; McElfresh MW; Maitland DJ
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2075-83. PubMed ID: 17019872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications.
    Staszczak M; Urbański L; Cristea M; Ionita D; Pieczyska EA
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.
    De Nardo L; Bertoldi S; Cigada A; Tanzi MC; Haugen HJ; Farè S
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):119-26. PubMed ID: 23015372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of film thickness on the crystalline morphology of a copolyesterurethane comprising crystallizable poly(ɛ-caprolactone) soft segments.
    Fang L; Wischke C; Kratz K; Lendlein A
    Clin Hemorheol Microcirc; 2015; 60(1):77-87. PubMed ID: 25818152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in degradable lactide-based shape-memory polymers.
    Balk M; Behl M; Wischke C; Zotzmann J; Lendlein A
    Adv Drug Deliv Rev; 2016 Dec; 107():136-152. PubMed ID: 27262926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer micronetworks with shape-memory as future platform to explore shape-dependent biological effects.
    Friess F; Nöchel U; Lendlein A; Wischke C
    Adv Healthc Mater; 2014 Dec; 3(12):1986-90. PubMed ID: 25295760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.
    Xie M; Wang L; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6772-81. PubMed ID: 25742188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape memory particles capable of controlled geometric and chemical asymmetry made from aliphatic polyesters.
    Brosnan SM; Jackson AM; Wang Y; Ashby VS
    Macromol Rapid Commun; 2014 Oct; 35(19):1653-60. PubMed ID: 25060745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape memory polymers and their composites in biomedical applications.
    Zhao W; Liu L; Zhang F; Leng J; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():864-883. PubMed ID: 30678978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.