These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24564463)

  • 1. The neural coding of feedback learning across child and adolescent development.
    Peters S; Braams BR; Raijmakers ME; Koolschijn PC; Crone EA
    J Cogn Neurosci; 2014 Aug; 26(8):1705-20. PubMed ID: 24564463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies influence neural activity for feedback learning across child and adolescent development.
    Peters S; Koolschijn PC; Crone EA; Van Duijvenvoorde AC; Raijmakers ME
    Neuropsychologia; 2014 Sep; 62():365-74. PubMed ID: 25050853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.
    Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA
    Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive strategy use as an index of developmental differences in neural responses to feedback.
    Andersen LM; Visser I; Crone EA; Koolschijn PC; Raijmakers ME
    Dev Psychol; 2014 Dec; 50(12):2686-96. PubMed ID: 25329556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development.
    van Duijvenvoorde AC; Zanolie K; Rombouts SA; Raijmakers ME; Crone EA
    J Neurosci; 2008 Sep; 28(38):9495-503. PubMed ID: 18799681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in performance monitoring: how electrophysiological data can enhance our understanding of error and feedback processing in childhood and adolescence.
    Ferdinand NK; Kray J
    Behav Brain Res; 2014 Apr; 263():122-32. PubMed ID: 24487012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphometry and connectivity of the fronto-parietal verbal working memory network in development.
    Østby Y; Tamnes CK; Fjell AM; Walhovd KB
    Neuropsychologia; 2011 Dec; 49(14):3854-62. PubMed ID: 22001853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging the changing role of feedback during learning in decision-making.
    Sailer U; Robinson S; Fischmeister FP; Moser E; Kryspin-Exner I; Bauer H
    Neuroimage; 2007 Oct; 37(4):1474-86. PubMed ID: 17698371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous and nonlinear development of human posterior parietal cortex function.
    Chang TT; Metcalfe AW; Padmanabhan A; Chen T; Menon V
    Neuroimage; 2016 Feb; 126():184-95. PubMed ID: 26655682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching between colors and shapes on the basis of positive and negative feedback: an fMRI and EEG study on feedback-based learning.
    Zanolie K; Teng S; Donohue SE; van Duijvenvoorde AC; Band GP; Rombouts SA; Crone EA
    Cortex; 2008 May; 44(5):537-47. PubMed ID: 18387586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis.
    Heitger MH; Ronsse R; Dhollander T; Dupont P; Caeyenberghs K; Swinnen SP
    Neuroimage; 2012 Jul; 61(3):633-50. PubMed ID: 22503778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frontomedian activation depends on both feedback validity and valence: fMRI evidence for contextual feedback evaluation.
    Volz KG; Schubotz RI; von Cramon DY
    Neuroimage; 2005 Sep; 27(3):564-71. PubMed ID: 15927486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of emotional regulation while viewing films.
    Shimamura AP; Marian DE; Haskins AL
    Brain Imaging Behav; 2013 Mar; 7(1):77-84. PubMed ID: 22843102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of developmental differences in risk estimation and feedback processing.
    van Leijenhorst L; Crone EA; Bunge SA
    Neuropsychologia; 2006; 44(11):2158-70. PubMed ID: 16574168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-related and item-related neural correlates of successful memory encoding.
    Otten LJ; Henson RN; Rugg MD
    Nat Neurosci; 2002 Dec; 5(12):1339-44. PubMed ID: 12402040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal engagement during sequential manual actions in children at early adolescence compared with adults.
    Domellöf E; Säfström D
    Neuroimage; 2020 May; 211():116623. PubMed ID: 32057999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced frontoparietal network architectures following "gaze-contingent" versus "free-hand" motor learning.
    James DR; Leff DR; Orihuela-Espina F; Kwok KW; Mylonas GP; Athanasiou T; Darzi AW; Yang GZ
    Neuroimage; 2013 Jan; 64():267-76. PubMed ID: 22960153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separable neural mechanisms contribute to feedback processing in a rule-learning task.
    Zanolie K; Van Leijenhorst L; Rombouts SA; Crone EA
    Neuropsychologia; 2008 Jan; 46(1):117-26. PubMed ID: 17900633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive procedural learning among children and adolescents with or without spastic cerebral palsy: the differential effect of age.
    Gofer-Levi M; Silberg T; Brezner A; Vakil E
    Res Dev Disabil; 2014 Sep; 35(9):1952-62. PubMed ID: 24858793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.