These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24564582)

  • 1. Anodic titania nanotubes grown on titanium tubular electrodes.
    Sun L; Wang X; Li M; Zhang S; Wang Q
    Langmuir; 2014 Mar; 30(10):2835-41. PubMed ID: 24564582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-sided anodic titania nanotube arrays: a lopsided growth process.
    Sun L; Zhang S; Sun XW; Wang X; Cai Y
    Langmuir; 2010 Dec; 26(23):18424-9. PubMed ID: 21049918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformal growth of anodic nanotubes for dye-sensitized solar cells: part II. Nonplanar electrode.
    Sun L; Zhang S; Wang Q
    J Nanosci Nanotechnol; 2014 Feb; 14(2):2050-64. PubMed ID: 24749473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anodic growth and biomedical applications of TiO2 nanotubes.
    Cipriano AF; Miller C; Liu H
    J Biomed Nanotechnol; 2014 Oct; 10(10):2977-3003. PubMed ID: 25992426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid.
    Xie Y; Zhao Y
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):5028-35. PubMed ID: 24094220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.
    Roman I; Trusca RD; Soare ML; Fratila C; Krasicka-Cydzik E; Stan MS; Dinischiotu A
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():374-82. PubMed ID: 24582263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical growth of vertically-oriented high aspect ratio titania nanotubes by rabid anodization in fluoride-free media.
    Fahim NF; Sekino T; Morks MF; Kusunose T
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1803-18. PubMed ID: 19435043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anodic growth of large-diameter multipodal TiO2 nanotubes.
    Mohammadpour A; Waghmare PR; Mitra SK; Shankar K
    ACS Nano; 2010 Dec; 4(12):7421-30. PubMed ID: 21126101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO2 nanotubes: interdependence of substrate grain orientation and growth rate.
    Leonardi S; Russo V; Li Bassi A; Di Fonzo F; Murray TM; Efstathiadis H; Agnoli A; Kunze-Liebhäuser J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1662-8. PubMed ID: 25545715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations.
    Khudhair D; Bhatti A; Li Y; Hamedani HA; Garmestani H; Hodgson P; Nahavandi S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1125-1142. PubMed ID: 26652471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode distance regulates the anodic growth of titanium dioxide (TiO
    Fan R; Wan J
    Nanotechnology; 2017 Jun; 28(25):25LT01. PubMed ID: 28453444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of patterned concave depth and surface curvature on anodization of titania nanotubes and alumina nanopores.
    Chen B; Lu K
    Langmuir; 2011 Oct; 27(19):12179-85. PubMed ID: 21861516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
    Çalışkan N; Bayram C; Erdal E; Karahaliloğlu Z; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():100-5. PubMed ID: 24411357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications.
    Fu Y; Mo A
    Nanoscale Res Lett; 2018 Jun; 13(1):187. PubMed ID: 29956033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells.
    Xie ZB; Adams S; Blackwood DJ; Wang J
    Nanotechnology; 2008 Oct; 19(40):405701. PubMed ID: 21832630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled morphology modulation of anodic TiO2 nanotubes via changing the composition of organic electrolytes.
    Guo Z; Li X; Zhang X; Guan Z; He T
    Phys Chem Chem Phys; 2014 Jun; 16(23):11502-8. PubMed ID: 24802504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectrocatalytic application of titania nanotube array for molecule detection.
    Xie Y; Zhou L; Huang H
    Biosens Bioelectron; 2007 Jun; 22(12):2812-8. PubMed ID: 17188856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.