BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24564637)

  • 1. Molecular pathway identification using biological network-regularized logistic models.
    Zhang W; Wan YW; Allen GI; Pang K; Anderson ML; Liu Z
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S7. PubMed ID: 24564637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein interaction network construction for cancer using a new L1/2-penalized Net-SVM model.
    Chai H; Huang HH; Jiang HK; Liang Y; Xia LY
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Objective Optimization Algorithm to Discover Condition-Specific Modules in Multiple Networks.
    Ma X; Sun P; Zhao J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29240706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GenePEN: analysis of network activity alterations in complex diseases via the pairwise elastic net.
    Vlassis N; Glaab E
    Stat Appl Genet Mol Biol; 2015 Apr; 14(2):221-4. PubMed ID: 25720129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple network algorithm for epigenetic modules via the integration of genome-wide DNA methylation and gene expression data.
    Ma X; Liu Z; Zhang Z; Huang X; Tang W
    BMC Bioinformatics; 2017 Jan; 18(1):72. PubMed ID: 28137264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification.
    Algamal ZY; Lee MH
    Comput Biol Med; 2015 Dec; 67():136-45. PubMed ID: 26520484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regularized Multi-View Subspace Clustering for Common Modules Across Cancer Stages.
    Zhang E; Ma X
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29701681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-Regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery.
    Min W; Liu J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):944-953. PubMed ID: 28113328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification.
    Liang Y; Liu C; Luan XZ; Leung KS; Chan TM; Xu ZB; Zhang H
    BMC Bioinformatics; 2013 Jun; 14():198. PubMed ID: 23777239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCentridFS: a tool for identifying module biomarkers for multi-phenotypes from high-throughput data.
    Wen Z; Zhang W; Zeng T; Chen L
    Mol Biosyst; 2014 Nov; 10(11):2870-5. PubMed ID: 25099602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models.
    Belhechmi S; Bin R; Rotolo F; Michiels S
    BMC Bioinformatics; 2020 Jul; 21(1):277. PubMed ID: 32615919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data.
    Gui S; Rice AP; Chen R; Wu L; Liu J; Miao H
    BMC Bioinformatics; 2017 Jan; 18(1):74. PubMed ID: 28143596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization-based inference for temporally evolving networks with applications in biology.
    Chang YH; Gray J; Tomlin C
    J Comput Biol; 2012 Dec; 19(12):1307-23. PubMed ID: 23210478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ridle for sparse regression with mandatory covariates with application to the genetic assessment of histologic grades of breast cancer.
    Zhai J; Hsu CH; Daye ZJ
    BMC Med Res Methodol; 2017 Jan; 17(1):12. PubMed ID: 28122498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the utility of clinical outcome-guided mutual information network in network-based Cox regression.
    Jeong HH; Kim S; Wee K; Sohn KA
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S8. PubMed ID: 25708115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.