BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24564680)

  • 1. Accumulation of CTCF-binding sites drives expression divergence between tandemly duplicated genes in humans.
    Liao BY; Chang A
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S8. PubMed ID: 24564680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of epigenetic regulators CTCF and BORIS/CTCFL in amniotes.
    Hore TA; Deakin JE; Marshall Graves JA
    PLoS Genet; 2008 Aug; 4(8):e1000169. PubMed ID: 18769711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome.
    Ni X; Zhang YE; Nègre N; Chen S; Long M; White KP
    PLoS Biol; 2012; 10(11):e1001420. PubMed ID: 23139640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct epigenetic domains separated by a CTCF bound insulator between the tandem genes, BLU and RASSF1A.
    Chang JW; Hsu HS; Ni HJ; Chuang CT; Hsiung CH; Huang TH; Wang YC
    PLoS One; 2010 Sep; 5(9):e12847. PubMed ID: 20877461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features.
    Essien K; Vigneau S; Apreleva S; Singh LN; Bartolomei MS; Hannenhalli S
    Genome Biol; 2009; 10(11):R131. PubMed ID: 19922652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome.
    Yu J; Wang L; Guo H; Liao B; King G; Zhang X
    BMC Genomics; 2017 Mar; 18(1):257. PubMed ID: 28340563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF.
    De La Rosa-Velázquez IA; Rincón-Arano H; Benítez-Bribiesca L; Recillas-Targa F
    Cancer Res; 2007 Mar; 67(6):2577-85. PubMed ID: 17363576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta.
    Sui Y; Li B; Shi J; Chen M
    BMC Genomics; 2014 Jan; 15():11. PubMed ID: 24393121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of CCCTC-binding factor in epigenetic regulation of cancer.
    Bose S; Saha S; Goswami H; Shanmugam G; Sarkar K
    Mol Biol Rep; 2023 Dec; 50(12):10383-10398. PubMed ID: 37840067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation-independent removable insulator controls chromatin remodeling at the HOXA locus via retinoic acid signaling.
    Ishihara K; Nakamoto M; Nakao M
    Hum Mol Genet; 2016 Dec; 25(24):5383-5394. PubMed ID: 27798106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional signatures of evolutionarily young CTCF binding sites.
    Azazi D; Mudge JM; Odom DT; Flicek P
    BMC Biol; 2020 Sep; 18(1):132. PubMed ID: 32988407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination.
    Libby RT; Hagerman KA; Pineda VV; Lau R; Cho DH; Baccam SL; Axford MM; Cleary JD; Moore JM; Sopher BL; Tapscott SJ; Filippova GN; Pearson CE; La Spada AR
    PLoS Genet; 2008 Nov; 4(11):e1000257. PubMed ID: 19008940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Duplicate gene divergence by changes in microRNA binding sites in Arabidopsis and Brassica.
    Wang S; Adams KL
    Genome Biol Evol; 2015 Feb; 7(3):646-55. PubMed ID: 25644246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CCCTC-binding factor: to loop or to bridge.
    Zlatanova J; Caiafa P
    Cell Mol Life Sci; 2009 May; 66(10):1647-60. PubMed ID: 19137260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach.
    Rivera AS; Pankey MS; Plachetzki DC; Villacorta C; Syme AE; Serb JM; Omilian AR; Oakley TH
    BMC Evol Biol; 2010 Apr; 10():123. PubMed ID: 20433736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic control of SPI1 gene by CTCF and ISWI ATPase SMARCA5.
    Dluhosova M; Curik N; Vargova J; Jonasova A; Zikmund T; Stopka T
    PLoS One; 2014; 9(2):e87448. PubMed ID: 24498324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTCF binding landscape in jawless fish with reference to Hox cluster evolution.
    Kadota M; Hara Y; Tanaka K; Takagi W; Tanegashima C; Nishimura O; Kuraku S
    Sci Rep; 2017 Jul; 7(1):4957. PubMed ID: 28694486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex.
    Huang K; Jia J; Wu C; Yao M; Li M; Jin J; Jiang C; Cai Y; Pei D; Pan G; Yao H
    J Biol Chem; 2013 Sep; 288(36):26067-26077. PubMed ID: 23884423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells.
    Méndez-Catalá CF; Gretton S; Vostrov A; Pugacheva E; Farrar D; Ito Y; Docquier F; Kita GX; Murrell A; Lobanenkov V; Klenova E
    Neoplasia; 2013 Aug; 15(8):898-912. PubMed ID: 23908591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome.
    Horakova AH; Moseley SC; McLaughlin CR; Tremblay DC; Chadwick BP
    Hum Mol Genet; 2012 Oct; 21(20):4367-77. PubMed ID: 22791747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.