BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24564682)

  • 1. Simultaneous inferences based on empirical Bayes methods and false discovery rates ineQTL data analysis.
    Chakraborty A; Jiang G; Boustani M; Liu Y; Skaar T; Li L
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S8. PubMed ID: 24564682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covariate-modulated local false discovery rate for genome-wide association studies.
    Zablocki RW; Schork AJ; Levine RA; Andreassen OA; Dale AM; Thompson WK
    Bioinformatics; 2014 Aug; 30(15):2098-104. PubMed ID: 24711653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HT-eQTL: integrative expression quantitative trait loci analysis in a large number of human tissues.
    Li G; Jima D; Wright FA; Nobel AB
    BMC Bioinformatics; 2018 Mar; 19(1):95. PubMed ID: 29523079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using functional annotation for the empirical determination of Bayes Factors for genome-wide association study analysis.
    Knight J; Barnes MR; Breen G; Weale ME
    PLoS One; 2011 Apr; 6(4):e14808. PubMed ID: 21556132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric estimation of the local false discovery rate for identifying genetic associations.
    Yang Y; Aghababazadeh FA; Bickel DR
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):98-108. PubMed ID: 23702547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies.
    Joehanes R; Zhang X; Huan T; Yao C; Ying SX; Nguyen QT; Demirkale CY; Feolo ML; Sharopova NR; Sturcke A; Schäffer AA; Heard-Costa N; Chen H; Liu PC; Wang R; Woodhouse KA; Tanriverdi K; Freedman JE; Raghavachari N; Dupuis J; Johnson AD; O'Donnell CJ; Levy D; Munson PJ
    Genome Biol; 2017 Jan; 18(1):16. PubMed ID: 28122634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating Prior Knowledge about Genetic Variants into the Analysis of Genetic Association Data: An Empirical Bayes Approach.
    Karimnezhad A; Bickel DR
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):635-646. PubMed ID: 30113898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression QTLs Mapping and Analysis: A Bayesian Perspective.
    Imprialou M; Petretto E; Bottolo L
    Methods Mol Biol; 2017; 1488():189-215. PubMed ID: 27933525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of false discoveries in grouped hypothesis testing for eQTL data.
    Rudra P; Zhou YH; Nobel A; Wright FA
    BMC Bioinformatics; 2024 Apr; 25(1):147. PubMed ID: 38605284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs.
    Guo X; Su G; Christensen OF; Janss L; Lund MS
    BMC Genomics; 2016 Jun; 17():468. PubMed ID: 27317562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical bayes methods and false discovery rates for microarrays.
    Efron B; Tibshirani R
    Genet Epidemiol; 2002 Jun; 23(1):70-86. PubMed ID: 12112249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue.
    Innocenti F; Cooper GM; Stanaway IB; Gamazon ER; Smith JD; Mirkov S; Ramirez J; Liu W; Lin YS; Moloney C; Aldred SF; Trinklein ND; Schuetz E; Nickerson DA; Thummel KE; Rieder MJ; Rettie AE; Ratain MJ; Cox NJ; Brown CD
    PLoS Genet; 2011 May; 7(5):e1002078. PubMed ID: 21637794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An empirical Bayes approach for multiple tissue eQTL analysis.
    Li G; Shabalin AA; Rusyn I; Wright FA; Nobel AB
    Biostatistics; 2018 Jul; 19(3):391-406. PubMed ID: 29029013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules.
    Zhang W; Zhu J; Schadt EE; Liu JS
    PLoS Comput Biol; 2010 Jan; 6(1):e1000642. PubMed ID: 20090830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle.
    McClure MC; Morsci NS; Schnabel RD; Kim JW; Yao P; Rolf MM; McKay SD; Gregg SJ; Chapple RH; Northcutt SL; Taylor JF
    Anim Genet; 2010 Dec; 41(6):597-607. PubMed ID: 20477797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies.
    Zhang J; Feng JY; Ni YL; Wen YJ; Niu Y; Tamba CL; Yue C; Song Q; Zhang YM
    Heredity (Edinb); 2017 Jun; 118(6):517-524. PubMed ID: 28295030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing allele specific expression and local expression quantitative trait loci and the influence of gene expression on complex trait variation in cattle.
    Khansefid M; Pryce JE; Bolormaa S; Chen Y; Millen CA; Chamberlain AJ; Vander Jagt CJ; Goddard ME
    BMC Genomics; 2018 Nov; 19(1):793. PubMed ID: 30390624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.