These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24564694)

  • 21. Is it necessary to penalize impulsive noise +5 dB due to higher risk of hearing damage?
    de Toro MA; Ordoñez R; Reuter K; Hammershøi D
    J Acoust Soc Am; 2011 Jun; 129(6):3808-17. PubMed ID: 21682404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Risk Assessment of Recreational Noise-Induced Hearing Loss from Exposure through a Personal Audio System-iPod Touch.
    Gopal KV; Mills LE; Phillips BS; Nandy R
    J Am Acad Audiol; 2019; 30(7):619-633. PubMed ID: 30395532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory monitoring by means of evaluation of the cochlea in soldiers of the Brazilian Army exposed to impulse noise.
    de Souza Chelminski Barreto MA; Costa CS; de Souza Guarita LK; Oliveira CA; Bahmad Júnior F
    Int Tinnitus J; 2011; 16(2):123-9. PubMed ID: 22249871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of distortion-product otoacoustic emissions after a 2-kHz monaural sound-exposure in humans: effects on fine structures.
    Aranda de Toro MA; Ordoñez R; Reuter K; Hammershøi D
    J Acoust Soc Am; 2010 Dec; 128(6):3568-76. PubMed ID: 21218889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of three hours of discotheque music on pure-tone thresholds and distortion product otoacoustic emissions.
    Müller J; Dietrich S; Janssen T
    J Acoust Soc Am; 2010 Oct; 128(4):1853-69. PubMed ID: 20968358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The correlation between hair and eye colour and contralateral suppression of otoacoustic emissions.
    Klopper M; Biagio-de Jager L; Vinck B
    Noise Health; 2019; 21(101):155-163. PubMed ID: 32719302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of ipsilateral and contralateral low-frequency narrow-band noise on temporary threshold shift in humans.
    Quaranta A; Scaringi A; Fernandez-Vega S; Quaranta N
    Acta Otolaryngol; 2003 Jan; 123(2):164-7. PubMed ID: 12701733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of discotheque music on audiometric results and central acoustic evoked neuromagnetic responses.
    Emmerich E; Richter F; Hagner H; Giessler F; Gehrlein S; Dieroff HG
    Int Tinnitus J; 2002; 8(1):13-9. PubMed ID: 14763230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting incipient inner-ear damage from impulse noise with otoacoustic emissions.
    Marshall L; Lapsley Miller JA; Heller LM; Wolgemuth KS; Hughes LM; Smith SD; Kopke RD
    J Acoust Soc Am; 2009 Feb; 125(2):995-1013. PubMed ID: 19206875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of outer ear resonant frequency on patterns of temporary threshold shift.
    Rodriguez GP; Gerhardt KJ
    Ear Hear; 1991 Apr; 12(2):110-4. PubMed ID: 2065834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporary threshold shift and otoacoustic emissions after industrial noise exposure.
    Kvaerner KJ; Engdahl B; Arnesen AR; Mair IW
    Scand Audiol; 1995; 24(2):137-41. PubMed ID: 7660058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hearing loss after noise exposure.
    Govindaraju R; Omar R; Rajagopalan R; Norlisah R; Kwan-Hoong N
    Auris Nasus Larynx; 2011 Aug; 38(4):519-22. PubMed ID: 21236610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A longitudinal study of changes in evoked otoacoustic emissions and pure-tone thresholds as measured in a hearing conservation program.
    Lapsley Miller JA; Marshall L; Heller LM
    Int J Audiol; 2004 Jun; 43(6):307-22. PubMed ID: 15457813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human temporary threshold shift (TTS) and damage risk.
    Melnick W
    J Acoust Soc Am; 1991 Jul; 90(1):147-54. PubMed ID: 1880282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noise in magnetic resonance imaging: no risk for sensorineural function but increased amplitude variability of otoacoustic emissions.
    Wagner W; Staud I; Frank G; Dammann F; Plontke S; Plinkert PK
    Laryngoscope; 2003 Jul; 113(7):1216-23. PubMed ID: 12838022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Measurement of the temporary auditory threshold shift (TTS) for evaluation of the degree of noise hazard].
    Lipowczan A; Sułkowski W; Tengler M
    Med Pr; 1983; 34(5-6):419-25. PubMed ID: 6672530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auditory system dysfunction in Brazilian gasoline station workers.
    Roggia SM; de França AG; Morata TC; Krieg E; Earl BR
    Int J Audiol; 2019 Aug; 58(8):484-496. PubMed ID: 31017499
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of repeated "benign" noise exposures in young CBA mice: shedding light on age-related hearing loss.
    Wang Y; Ren C
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):505-15. PubMed ID: 22532192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporary off-frequency listening after noise trauma.
    Etchelecou MC; Coulet O; Derkenne R; Tomasi M; Noreña AJ
    Hear Res; 2011 Dec; 282(1-2):81-91. PubMed ID: 21986211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of usage of personal music systems on oto-acoustic emissions among medical students.
    Narahari PG; Bhat J; Nambi A; Arora A
    Noise Health; 2017; 19(90):222-226. PubMed ID: 28937016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.