These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24564708)

  • 1. Informed public choices for low-carbon electricity portfolios using a computer decision tool.
    Mayer LA; Bruine de Bruin W; Morgan MG
    Environ Sci Technol; 2014 Apr; 48(7):3640-8. PubMed ID: 24564708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Informed public preferences for electricity portfolios with CCS and other low-carbon technologies.
    Fleishman LA; De Bruin WB; Morgan MG
    Risk Anal; 2010 Sep; 30(9):1399-410. PubMed ID: 20561264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives of Informed Citizen Panel on Low-Carbon Electricity Portfolios in Switzerland and Longer-Term Evaluation of Informational Materials.
    Volken SP; Xexakis G; Trutnevyte E
    Environ Sci Technol; 2018 Oct; 52(20):11478-11489. PubMed ID: 30208273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the Chinese Electricity Mix for CO
    Kang J; Ng TS; Su B; Yuan R
    Environ Sci Technol; 2020 Jan; 54(2):697-706. PubMed ID: 31855603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.
    Mileva A; Nelson JH; Johnston J; Kammen DM
    Environ Sci Technol; 2013 Aug; 47(16):9053-60. PubMed ID: 23865424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand.
    Rule BM; Worth ZJ; Boyle CA
    Environ Sci Technol; 2009 Aug; 43(16):6406-13. PubMed ID: 19746744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open Source Energy System Modeling Using Break-Even Costs to Inform State-Level Policy: A North Carolina Case Study.
    Li B; Thomas J; de Queiroz AR; DeCarolis JF
    Environ Sci Technol; 2020 Jan; 54(2):665-676. PubMed ID: 31834995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decarbonization of the Indian electricity sector: Technology choices and policy trade-offs.
    Rudnick I; Duenas-Martinez P; Botterud A; Papageorgiou DJ; Mignone BK; Rajagopalan S; Harper MR; Ganesan K
    iScience; 2022 Apr; 25(4):104017. PubMed ID: 35359809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing U.S. residential energy use and CO2 emissions: how much, how soon, and at what cost?
    Lima Azevedo I; Morgan MG; Palmer K; Lave LB
    Environ Sci Technol; 2013 Mar; 47(6):2502-11. PubMed ID: 23398047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.
    Peer RA; Garrison JB; Timms CP; Sanders KT
    Environ Sci Technol; 2016 Apr; 50(8):4537-45. PubMed ID: 26967826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sourcing of Steam and Electricity for Carbon Capture Retrofits.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2017 Nov; 51(21):12908-12917. PubMed ID: 28968494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Options for near-term phaseout of CO(2) emissions from coal use in the United States.
    Kharecha PA; Kutscher CF; Hansen JE; Mazria E
    Environ Sci Technol; 2010 Jun; 44(11):4050-62. PubMed ID: 20429611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review.
    Wang Y; Pan Z; Zhang W; Borhani TN; Li R; Zhang Z
    Environ Res; 2022 May; 207():112219. PubMed ID: 34656638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-carbon trade-off for inter-provincial electricity transmissions in China.
    Liu L; Yin Z; Wang P; Gan Y; Liao X
    J Environ Manage; 2020 Aug; 268():110719. PubMed ID: 32510450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide emissions from the electricity sector in major countries: a decomposition analysis.
    Li X; Liao H; Du YF; Wang C; Wang JW; Liu Y
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6814-6825. PubMed ID: 29264859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.
    Sathre R; Masanet E
    Environ Sci Technol; 2012 Sep; 46(17):9768-76. PubMed ID: 22857130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.