These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 24564739)

  • 21. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces.
    Sajadinia SH; Sharif F
    J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From hydrophobic to superhydrophobic and superhydrophilic siloxanes by thermal treatment.
    Karapanagiotis I; Manoudis PN; Zurba A; Lampakis D
    Langmuir; 2014 Nov; 30(44):13235-43. PubMed ID: 25313653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.
    Iqbal R; Majhy B; Sen AK
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31170-31180. PubMed ID: 28829562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonsolvent-assisted fabrication of multi-scaled polylactide as superhydrophobic surfaces.
    Chang Y; Liu X; Yang H; Zhang L; Cui Z; Niu M; Liu H; Chen J
    Soft Matter; 2016 Mar; 12(10):2766-72. PubMed ID: 26860288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Completely superhydrophobic PDMS surfaces for microfluidics.
    Tropmann A; Tanguy L; Koltay P; Zengerle R; Riegger L
    Langmuir; 2012 Jun; 28(22):8292-5. PubMed ID: 22590992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.
    Shang Y; Si Y; Raza A; Yang L; Mao X; Ding B; Yu J
    Nanoscale; 2012 Dec; 4(24):7847-54. PubMed ID: 23149675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.
    Dong F; Zhang M; Tang WW; Wang Y
    J Phys Chem B; 2015 Apr; 119(16):5321-7. PubMed ID: 25835644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid formation of superhydrophobic surfaces with fast response wettability transition.
    Zhu X; Zhang Z; Men X; Yang J; Xu X
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3636-41. PubMed ID: 21073178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liang T; Feng Y; Zeng X
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3131-3141. PubMed ID: 28032982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterning and impregnation of superhydrophobic surfaces using aqueous solutions.
    Manna U; Lynn DM
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7731-6. PubMed ID: 23931600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Instant Tuning of Superhydrophilic to Robust Superhydrophobic and Self-Cleaning Metallic Coating: Simple, Direct, One-Step, and Scalable Technique.
    Rahman OSA; Mukherjee B; Islam A; Keshri AK
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4616-4624. PubMed ID: 30608641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superamphiphobic surface by nanotransfer molding and isotropic etching.
    Lee SE; Kim HJ; Lee SH; Choi DG
    Langmuir; 2013 Jun; 29(25):8070-5. PubMed ID: 23701230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.
    Song B
    Mar Pollut Bull; 2016 Dec; 113(1-2):211-215. PubMed ID: 27624760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superhydrophobic, mechanically durable coatings for controllable light and magnetism driven actuators.
    Wu H; Luo J; Huang X; Wang L; Guo Z; Liang J; Zhang S; Xue H; Gao J
    J Colloid Interface Sci; 2021 Dec; 603():282-290. PubMed ID: 34186405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superhydrophobic surfaces from hierarchically structured wrinkled polymers.
    Li Y; Dai S; John J; Carter KR
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11066-73. PubMed ID: 24131534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superhydrophobic aluminum surfaces by deposition of micelles of fluorinated block copolymers.
    Desbief S; Grignard B; Detrembleur C; Rioboo R; Vaillant A; Seveno D; Voué M; De Coninck J; Jonas AM; Jérôme C; Damman P; Lazzaroni R
    Langmuir; 2010 Feb; 26(3):2057-67. PubMed ID: 19761260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially controlled surface energy traps on superhydrophobic surfaces.
    Milionis A; Fragouli D; Martiradonna L; Anyfantis GC; Cozzoli PD; Bayer IS; Athanassiou A
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1036-43. PubMed ID: 24386959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.