These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 24564771)
1. Combined experimental and computational investigations of rhodium- and ruthenium-catalyzed C-H functionalization of pyrazoles with alkynes. Algarra AG; Cross WB; Davies DL; Khamker Q; Macgregor SA; McMullin CL; Singh K J Org Chem; 2014 Mar; 79(5):1954-70. PubMed ID: 24564771 [TBL] [Abstract][Full Text] [Related]
2. Origins of the selectivity for borylation of primary over secondary C-H bonds catalyzed by Cp*-rhodium complexes. Wei CS; Jiménez-Hoyos CA; Videa MF; Hartwig JF; Hall MB J Am Chem Soc; 2010 Mar; 132(9):3078-91. PubMed ID: 20121104 [TBL] [Abstract][Full Text] [Related]
3. The Mechanism of N-O Bond Cleavage in Rhodium-Catalyzed C-H Bond Functionalization of Quinoline N-oxides with Alkynes: A Computational Study. Li Y; Liu S; Qi Z; Qi X; Li X; Lan Y Chemistry; 2015 Jul; 21(28):10131-7. PubMed ID: 26059235 [TBL] [Abstract][Full Text] [Related]
4. Pyridine N-Oxide vs Pyridine Substrates for Rh(III)-Catalyzed Oxidative C-H Bond Functionalization. Neufeldt SR; Jiménez-Osés G; Huckins JR; Thiel OR; Houk KN J Am Chem Soc; 2015 Aug; 137(31):9843-54. PubMed ID: 26197041 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation. Qi X; Li Y; Bai R; Lan Y Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396 [TBL] [Abstract][Full Text] [Related]
6. Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles. Davies DL; Ellul CE; Macgregor SA; McMullin CL; Singh K J Am Chem Soc; 2015 Aug; 137(30):9659-69. PubMed ID: 26115418 [TBL] [Abstract][Full Text] [Related]
7. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations. Ackermann L Acc Chem Res; 2014 Feb; 47(2):281-95. PubMed ID: 23379589 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones. Wu W; Liu Y; Bi S Org Biomol Chem; 2015 Aug; 13(30):8251-60. PubMed ID: 26138233 [TBL] [Abstract][Full Text] [Related]
9. Ruthenium-catalyzed oxidative coupling/cyclization of isoquinolones with alkynes through C-H/N-H activation: mechanism study and synthesis of dibenzo[a,g]quinolizin-8-one derivatives. Li B; Feng H; Wang N; Ma J; Song H; Xu S; Wang B Chemistry; 2012 Oct; 18(40):12873-9. PubMed ID: 22930580 [TBL] [Abstract][Full Text] [Related]
10. Rh(III)-Catalyzed Cascade Oxidative Annulation of Benzoylacetonitrile with Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity. Fu X; Shang Z; Xu X J Org Chem; 2016 Sep; 81(18):8378-85. PubMed ID: 27532146 [TBL] [Abstract][Full Text] [Related]
11. Mechanism and Selectivity of Ru(II) - and Rh(III) -Catalyzed Oxidative Spiroannulation of Naphthols and Phenols with Alkynes through a C-H Activation/Dearomatization Strategy. Zhang M; Huang G Chemistry; 2016 Jun; 22(27):9356-65. PubMed ID: 27225930 [TBL] [Abstract][Full Text] [Related]
12. A convenient synthesis of quinolizinium salts through Rh(III) or Ru(II)-catalyzed C-H bond activation of 2-alkenylpyridines. Luo CZ; Gandeepan P; Cheng CH Chem Commun (Camb); 2013 Oct; 49(76):8528-30. PubMed ID: 23938459 [TBL] [Abstract][Full Text] [Related]
13. DFT Studies on the Mechanism of the Rhodium(III)-Catalyzed C-H Activation of N-Phenoxyacetamide. Li J; Qiu Z J Org Chem; 2015 Nov; 80(21):10686-93. PubMed ID: 26457567 [TBL] [Abstract][Full Text] [Related]
14. Computational and synthetic studies on the cyclometallation reaction of dimethylbenzylamine with [IrCl2Cp*]2: role of the chelating base. Boutadla Y; Davies DL; Macgregor SA; Poblador-Bahamonde AI Dalton Trans; 2009 Aug; (30):5887-93. PubMed ID: 19623389 [TBL] [Abstract][Full Text] [Related]
15. Rate-limiting step of the Rh-catalyzed carboacylation of alkenes: C-C bond activation or migratory insertion? Lutz JP; Rathbun CM; Stevenson SM; Powell BM; Boman TS; Baxter CE; Zona JM; Johnson JB J Am Chem Soc; 2012 Jan; 134(1):715-22. PubMed ID: 22133417 [TBL] [Abstract][Full Text] [Related]
16. Autocatalysis for C-H bond activation by ruthenium(II) complexes in catalytic arylation of functional arenes. Ferrer Flegeau E; Bruneau C; Dixneuf PH; Jutand A J Am Chem Soc; 2011 Jul; 133(26):10161-70. PubMed ID: 21604765 [TBL] [Abstract][Full Text] [Related]
17. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction. Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491 [TBL] [Abstract][Full Text] [Related]
18. Ruthenium-Catalyzed Oxidative Coupling of Primary Amines with Internal Alkynes through C-H Bond Activation: Scope and Mechanistic Studies. Ruiz S; Villuendas P; Ortuño MA; Lledós A; Urriolabeitia EP Chemistry; 2015 Jun; 21(23):8626-36. PubMed ID: 25916684 [TBL] [Abstract][Full Text] [Related]
19. Experimental and computational investigation of C-N bond activation in ruthenium N-heterocyclic carbene complexes. Häller LJ; Page MJ; Erhardt S; Macgregor SA; Mahon MF; Naser MA; Vélez A; Whittlesey MK J Am Chem Soc; 2010 Dec; 132(51):18408-16. PubMed ID: 21128626 [TBL] [Abstract][Full Text] [Related]
20. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]