These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24564964)

  • 1. Modeling protein conformational transitions by a combination of coarse-grained normal mode analysis and robotics-inspired methods.
    Al-Bluwi I; Vaisset M; Siméon T; Cortés J
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S2. PubMed ID: 24564964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins.
    Kirillova S; Cortés J; Stefaniu A; Siméon T
    Proteins; 2008 Jan; 70(1):131-43. PubMed ID: 17640073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 6th Computational Structural Bioinformatics Workshop.
    He J; Shehu A; Haspel N; Chen B
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):I1. PubMed ID: 24564893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracing conformational changes in proteins.
    Haspel N; Moll M; Baker ML; Chiu W; Kavraki LE
    BMC Struct Biol; 2010 May; 10 Suppl 1(Suppl 1):S1. PubMed ID: 20487508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-Well Ultra-Coarse-Grained Model to Describe Protein Conformational Transitions.
    Zhang Y; Cao Z; Zhang JZ; Xia F
    J Chem Theory Comput; 2020 Oct; 16(10):6678-6689. PubMed ID: 32926616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method.
    Molloy K; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S8. PubMed ID: 24565158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mixed molecular modeling-robotics approach to investigate lipase large molecular motions.
    Barbe S; Cortés J; Siméon T; Monsan P; Remaud-Siméon M; André I
    Proteins; 2011 Aug; 79(8):2517-29. PubMed ID: 21656568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins.
    Krüger DM; Ahmed A; Gohlke H
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W310-6. PubMed ID: 22669906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale characterization of protein conformational ensembles.
    Shehu A; Kavraki LE; Clementi C
    Proteins; 2009 Sep; 76(4):837-51. PubMed ID: 19280604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of conformational transitions in proteins by virtual atom molecular mechanics as validated in application to adenylate kinase.
    Korkut A; Hendrickson WA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15673-8. PubMed ID: 19706894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational transitions of adenylate kinase: switching by cracking.
    Whitford PC; Miyashita O; Levy Y; Onuchic JN
    J Mol Biol; 2007 Mar; 366(5):1661-71. PubMed ID: 17217965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins.
    Ahmed A; Rippmann F; Barnickel G; Gohlke H
    J Chem Inf Model; 2011 Jul; 51(7):1604-22. PubMed ID: 21639141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frustration-guided motion planning reveals conformational transitions in proteins.
    Budday D; Fonseca R; Leyendecker S; van den Bedem H
    Proteins; 2017 Oct; 85(10):1795-1807. PubMed ID: 28597937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Repeated Conformational Transitions in Substrate Binding of Adenylate Kinase.
    Lu J; Scheerer D; Haran G; Li W; Wang W
    J Phys Chem B; 2022 Oct; 126(41):8188-8201. PubMed ID: 36222098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics.
    Kim JI; Na S; Eom K
    J Comput Chem; 2011 Jan; 32(1):161-9. PubMed ID: 20645300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How well can we understand large-scale protein motions using normal modes of elastic network models?
    Yang L; Song G; Jernigan RL
    Biophys J; 2007 Aug; 93(3):920-9. PubMed ID: 17483178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Features of large hinge-bending conformational transitions. Prediction of closed structure from open state.
    Uyar A; Kantarci-Carsibasi N; Haliloglu T; Doruker P
    Biophys J; 2014 Jun; 106(12):2656-66. PubMed ID: 24940783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using robotics to fold proteins and dock ligands.
    Brutlag D; Apaydin S; Guestrin C; Hsu D; Varma C; Singh A; Latombe JC
    Bioinformatics; 2002; 18 Suppl 2():S74. PubMed ID: 12385986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single molecule conformational dynamics of adenylate kinase: energy landscape, structural correlations, and transition state ensembles.
    Lu Q; Wang J
    J Am Chem Soc; 2008 Apr; 130(14):4772-83. PubMed ID: 18338887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-grained free energy functions for studying protein conformational changes: a double-well network model.
    Chu JW; Voth GA
    Biophys J; 2007 Dec; 93(11):3860-71. PubMed ID: 17704151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.