These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
743 related articles for article (PubMed ID: 24565034)
1. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. Zhang J; Zhang S; Wang Y; Zhang XS BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034 [TBL] [Abstract][Full Text] [Related]
2. Identifying mutated driver pathways in cancer by integrating multi-omics data. Wu J; Cai Q; Wang J; Liao Y Comput Biol Chem; 2019 Jun; 80():159-167. PubMed ID: 30959272 [TBL] [Abstract][Full Text] [Related]
3. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes. Sintupisut N; Liu PL; Yeang CH Nucleic Acids Res; 2013 Oct; 41(19):8803-21. PubMed ID: 23907387 [TBL] [Abstract][Full Text] [Related]
4. Identifying overlapping mutated driver pathways by constructing gene networks in cancer. Wu H; Gao L; Li F; Song F; Yang X; Kasabov N BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819 [TBL] [Abstract][Full Text] [Related]
5. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration. Zhang W; Wang SL Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714 [TBL] [Abstract][Full Text] [Related]
6. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer. Wu H; Chen Z; Wu Y; Zhang H; Liu Q Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536 [TBL] [Abstract][Full Text] [Related]
7. Automated network analysis identifies core pathways in glioblastoma. Cerami E; Demir E; Schultz N; Taylor BS; Sander C PLoS One; 2010 Feb; 5(2):e8918. PubMed ID: 20169195 [TBL] [Abstract][Full Text] [Related]
8. Identification of driver pathways in cancer based on combinatorial patterns of somatic gene mutations. Li HT; Zhang J; Xia J; Zheng CH Neoplasma; 2016; 63(1):57-63. PubMed ID: 26639234 [TBL] [Abstract][Full Text] [Related]
9. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach. Zhang D; Chen P; Zheng CH; Xia J Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889 [TBL] [Abstract][Full Text] [Related]
10. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma. Gu Y; Wang H; Qin Y; Zhang Y; Zhao W; Qi L; Zhang Y; Wang C; Guo Z Mol Biosyst; 2013 Mar; 9(3):467-77. PubMed ID: 23344900 [TBL] [Abstract][Full Text] [Related]
12. The Integrated Analyses of Driver Genes Identify Key Biomarkers in Thyroid Cancer. Xu Q; Song A; Xie Q Technol Cancer Res Treat; 2020; 19():1533033820940440. PubMed ID: 32812852 [TBL] [Abstract][Full Text] [Related]
13. Discovery of mutated subnetworks associated with clinical data in cancer. Vandin F; Clay P; Upfal E; Raphael BJ Pac Symp Biocomput; 2012; ():55-66. PubMed ID: 22174262 [TBL] [Abstract][Full Text] [Related]
14. De novo discovery of mutated driver pathways in cancer. Vandin F; Upfal E; Raphael BJ Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252 [TBL] [Abstract][Full Text] [Related]
15. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions. Dao P; Kim YA; Wojtowicz D; Madan S; Sharan R; Przytycka TM PLoS Comput Biol; 2017 Oct; 13(10):e1005695. PubMed ID: 29023534 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules. Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572 [TBL] [Abstract][Full Text] [Related]
17. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. Merid SK; Goranskaya D; Alexeyenko A BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784 [TBL] [Abstract][Full Text] [Related]
18. Detection of Driver Modules with Rarely Mutated Genes in Cancers. Li F; Gao L; Wang B IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):390-401. PubMed ID: 29994261 [TBL] [Abstract][Full Text] [Related]
19. Voting-based cancer module identification by combining topological and data-driven properties. Azad AK; Lee H PLoS One; 2013; 8(8):e70498. PubMed ID: 23940583 [TBL] [Abstract][Full Text] [Related]
20. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Li A; Chapuy B; Varelas X; Sebastiani P; Monti S Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]