These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
597 related articles for article (PubMed ID: 24565118)
1. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Mbonye U; Karn J Virology; 2014 Apr; 454-455():328-39. PubMed ID: 24565118 [TBL] [Abstract][Full Text] [Related]
2. The Molecular Basis for Human Immunodeficiency Virus Latency. Mbonye U; Karn J Annu Rev Virol; 2017 Sep; 4(1):261-285. PubMed ID: 28715973 [TBL] [Abstract][Full Text] [Related]
3. The cell biology of HIV-1 latency and rebound. Mbonye U; Karn J Retrovirology; 2024 Apr; 21(1):6. PubMed ID: 38580979 [TBL] [Abstract][Full Text] [Related]
4. A Natural Product from Polygonum cuspidatum Sieb. Et Zucc. Promotes Tat-Dependent HIV Latency Reversal through Triggering P-TEFb's Release from 7SK snRNP. Wang C; Yang S; Lu H; You H; Ni M; Shan W; Lin T; Gao X; Chen H; Zhou Q; Xue Y PLoS One; 2015; 10(11):e0142739. PubMed ID: 26569506 [TBL] [Abstract][Full Text] [Related]
5. The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency. Mousseau G; Kessing CF; Fromentin R; Trautmann L; Chomont N; Valente ST mBio; 2015 Jul; 6(4):e00465. PubMed ID: 26152583 [TBL] [Abstract][Full Text] [Related]
6. A Stronger Transcription Regulatory Circuit of HIV-1C Drives the Rapid Establishment of Latency with Implications for the Direct Involvement of Tat. Chakraborty S; Kabi M; Ranga U J Virol; 2020 Sep; 94(19):. PubMed ID: 32669338 [TBL] [Abstract][Full Text] [Related]
7. Control of HIV latency by epigenetic and non-epigenetic mechanisms. Mbonye U; Karn J Curr HIV Res; 2011 Dec; 9(8):554-67. PubMed ID: 22211660 [TBL] [Abstract][Full Text] [Related]
8. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Karn J Curr Opin HIV AIDS; 2011 Jan; 6(1):4-11. PubMed ID: 21242887 [TBL] [Abstract][Full Text] [Related]
9. Posttranscriptional Regulation of HIV-1 Gene Expression during Replication and Reactivation from Latency by Nuclear Matrix Protein MATR3. Sarracino A; Gharu L; Kula A; Pasternak AO; Avettand-Fenoel V; Rouzioux C; Bardina M; De Wit S; Benkirane M; Berkhout B; Van Lint C; Marcello A mBio; 2018 Nov; 9(6):. PubMed ID: 30425153 [TBL] [Abstract][Full Text] [Related]
10. A lentiviral vector that activates latent human immunodeficiency virus-1 proviruses by the overexpression of tat and that kills the infected cells. Macías D; Oya R; Saniger L; Martín F; Luque F Hum Gene Ther; 2009 Nov; 20(11):1259-68. PubMed ID: 19604078 [TBL] [Abstract][Full Text] [Related]
11. A truncated HIV Tat demonstrates potent and specific latency reversal activity. Van Gulck E; Pardons M; Nijs E; Verheyen N; Dockx K; Van Den Eynde C; Battivelli E; Vega J; Florence E; Autran B; Archin NM; Margolis DM; Katlama C; Hamimi C; Van Den Wyngaert I; Eyassu F; Vandekerckhove L; Boden D Antimicrob Agents Chemother; 2023 Nov; 67(11):e0041723. PubMed ID: 37874295 [TBL] [Abstract][Full Text] [Related]
12. UHRF1 Suppresses HIV-1 Transcription and Promotes HIV-1 Latency by Competing with p-TEFb for Ubiquitination-Proteasomal Degradation of Tat. Liang T; Zhang Q; Wu Z; Chen P; Huang Y; Liu S; Li L mBio; 2021 Aug; 12(4):e0162521. PubMed ID: 34465029 [TBL] [Abstract][Full Text] [Related]
13. Splicing Factor 3B Subunit 1 Interacts with HIV Tat and Plays a Role in Viral Transcription and Reactivation from Latency. Kyei GB; Meng S; Ramani R; Niu A; Lagisetti C; Webb TR; Ratner L mBio; 2018 Nov; 9(6):. PubMed ID: 30401776 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir. Lin X; Irwin D; Kanazawa S; Huang L; Romeo J; Yen TS; Peterlin BM J Virol; 2003 Aug; 77(15):8227-36. PubMed ID: 12857891 [TBL] [Abstract][Full Text] [Related]
15. The KAT5-Acetyl-Histone4-Brd4 axis silences HIV-1 transcription and promotes viral latency. Li Z; Mbonye U; Feng Z; Wang X; Gao X; Karn J; Zhou Q PLoS Pathog; 2018 Apr; 14(4):e1007012. PubMed ID: 29684085 [TBL] [Abstract][Full Text] [Related]
16. A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter. Wu J; Ao MT; Shao R; Wang HR; Yu D; Fang MJ; Gao X; Wu Z; Zhou Q; Xue YH Sci Rep; 2017 Sep; 7(1):10657. PubMed ID: 28878233 [TBL] [Abstract][Full Text] [Related]
17. T-cell receptor signaling enhances transcriptional elongation from latent HIV proviruses by activating P-TEFb through an ERK-dependent pathway. Kim YK; Mbonye U; Hokello J; Karn J J Mol Biol; 2011 Jul; 410(5):896-916. PubMed ID: 21763495 [TBL] [Abstract][Full Text] [Related]
18. Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome. Hokello J; Sharma AL; Tyagi M Viruses; 2020 Aug; 12(8):. PubMed ID: 32784426 [TBL] [Abstract][Full Text] [Related]
19. Probabilistic control of HIV latency and transactivation by the Tat gene circuit. Cao Y; Lei X; Ribeiro RM; Perelson AS; Liang J Proc Natl Acad Sci U S A; 2018 Dec; 115(49):12453-12458. PubMed ID: 30455316 [TBL] [Abstract][Full Text] [Related]
20. Lost in transcription: molecular mechanisms that control HIV latency. Taube R; Peterlin M Viruses; 2013 Mar; 5(3):902-27. PubMed ID: 23518577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]