These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 24565163)
1. The National Institutes of Health Microphysiological Systems Program focuses on a critical challenge in the drug discovery pipeline. Sutherland ML; Fabre KM; Tagle DA Stem Cell Res Ther; 2013; 4 Suppl 1(Suppl 1):I1. PubMed ID: 24565163 [TBL] [Abstract][Full Text] [Related]
2. Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization. Fowler S; Chen WLK; Duignan DB; Gupta A; Hariparsad N; Kenny JR; Lai WG; Liras J; Phillips JA; Gan J Lab Chip; 2020 Feb; 20(3):446-467. PubMed ID: 31932816 [TBL] [Abstract][Full Text] [Related]
3. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Watson DE; Hunziker R; Wikswo JP Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799 [TBL] [Abstract][Full Text] [Related]
4. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies. Phillips JA; Grandhi TSP; Davis M; Gautier JC; Hariparsad N; Keller D; Sura R; Van Vleet TR Lab Chip; 2020 Feb; 20(3):468-476. PubMed ID: 31989145 [TBL] [Abstract][Full Text] [Related]
5. Technical aspects of microphysiological systems (MPS) as a promising wet human-in-vivo simulator. Kanamori T; Sugiura S; Sakai Y Drug Metab Pharmacokinet; 2018 Feb; 33(1):40-42. PubMed ID: 29217459 [TBL] [Abstract][Full Text] [Related]
6. Organs-on-chips: Progress, challenges, and future directions. Low LA; Tagle DA Exp Biol Med (Maywood); 2017 Oct; 242(16):1573-1578. PubMed ID: 28343437 [TBL] [Abstract][Full Text] [Related]
7. Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery. Ewart L; Dehne EM; Fabre K; Gibbs S; Hickman J; Hornberg E; Ingelman-Sundberg M; Jang KJ; Jones DR; Lauschke VM; Marx U; Mettetal JT; Pointon A; Williams D; Zimmermann WH; Newham P Annu Rev Pharmacol Toxicol; 2018 Jan; 58():65-82. PubMed ID: 29029591 [TBL] [Abstract][Full Text] [Related]
8. Liver microphysiological platforms for drug metabolism applications. Kulsharova G; Kurmangaliyeva A Cell Prolif; 2021 Sep; 54(9):e13099. PubMed ID: 34291515 [TBL] [Abstract][Full Text] [Related]
9. Liver Microphysiological Systems for Predicting and Evaluating Drug Effects. Ribeiro AJS; Yang X; Patel V; Madabushi R; Strauss DG Clin Pharmacol Ther; 2019 Jul; 106(1):139-147. PubMed ID: 30993668 [TBL] [Abstract][Full Text] [Related]
10. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. Baudy AR; Otieno MA; Hewitt P; Gan J; Roth A; Keller D; Sura R; Van Vleet TR; Proctor WR Lab Chip; 2020 Jan; 20(2):215-225. PubMed ID: 31799979 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in Body-on-a-Chip Systems. Sung JH; Wang YI; Narasimhan Sriram N; Jackson M; Long C; Hickman JJ; Shuler ML Anal Chem; 2019 Jan; 91(1):330-351. PubMed ID: 30472828 [No Abstract] [Full Text] [Related]
12. Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). Baran SW; Brown PC; Baudy AR; Fitzpatrick SC; Frantz C; Fullerton A; Gan J; Hardwick RN; Hillgren KM; Kopec AK; Liras JL; Mendrick DL; Nagao R; Proctor WR; Ramsden D; Ribeiro AJS; Stresser D; Sung KE; Sura R; Tetsuka K; Tomlinson L; Van Vleet T; Wagoner MP; Wang Q; Arslan SY; Yoder G; Ekert JE ALTEX; 2022; 39(2):297–314. PubMed ID: 35064273 [TBL] [Abstract][Full Text] [Related]
13. Imaging microphysiological systems: a review. Peel S; Jackman M Am J Physiol Cell Physiol; 2021 May; 320(5):C669-C680. PubMed ID: 33356942 [TBL] [Abstract][Full Text] [Related]
14. Building a microphysiological skin model from induced pluripotent stem cells. Guo Z; Higgins CA; Gillette BM; Itoh M; Umegaki N; Gledhill K; Sia SK; Christiano AM Stem Cell Res Ther; 2013; 4 Suppl 1(Suppl 1):S2. PubMed ID: 24564920 [TBL] [Abstract][Full Text] [Related]
15. Preclinical pharmacokinetics: an approach towards safer and efficacious drugs. Singh SS Curr Drug Metab; 2006 Feb; 7(2):165-82. PubMed ID: 16472106 [TBL] [Abstract][Full Text] [Related]
16. Drug testing and characterization using human-on-chip (HoC) systems: some thoughts on the application of in vitro-in vivo correlation. Somayaji MR; Das D; Przekwas AJ Drug Discov Today; 2018 Sep; 23(9):1571-1573. PubMed ID: 29428643 [No Abstract] [Full Text] [Related]
17. The NIH microphysiological systems program: developing in vitro tools for safety and efficacy in drug development. Tagle DA Curr Opin Pharmacol; 2019 Oct; 48():146-154. PubMed ID: 31622895 [TBL] [Abstract][Full Text] [Related]
18. New technologies in drug metabolism and toxicity screening: organ-to-organ interaction. Bhushan A; Martucci NJ; Usta OB; Yarmush ML Expert Opin Drug Metab Toxicol; 2016 May; 12(5):475-7. PubMed ID: 26940609 [No Abstract] [Full Text] [Related]
19. Pumpless, unidirectional microphysiological system for testing metabolism-dependent chemotherapeutic toxicity. LaValley DJ; Miller PG; Shuler ML Biotechnol Prog; 2021 Mar; 37(2):e3105. PubMed ID: 33274840 [TBL] [Abstract][Full Text] [Related]
20. Perspectives on bioanalytical mass spectrometry and automation in drug discovery. Janiszewski JS; Liston TE; Cole MJ Curr Drug Metab; 2008 Nov; 9(9):986-94. PubMed ID: 18991596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]