BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24565172)

  • 41. Spectral prediction of sediment chemistry in Lake Okeechobee, Florida.
    Vogel WJ; Osborne TZ; James RT; Cohen MJ
    Environ Monit Assess; 2016 Oct; 188(10):594. PubMed ID: 27679513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sudden eutrophication of an aluminum sulphate treated lake due to abrupt increase of internal phosphorus loading after three decades of mesotrophy.
    Dadi T; Schultze M; Kong X; Seewald M; Rinke K; Friese K
    Water Res; 2023 May; 235():119824. PubMed ID: 36913811
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of aluminum treatment on phosphorus, carbon, and nitrogen distribution in lake sediment: a 31P NMR study.
    Reitzel K; Ahlgren J; Gogoll A; Rydin E
    Water Res; 2006 Feb; 40(4):647-54. PubMed ID: 16427681
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Long-term effects of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany).
    Lewandowski J; Schauser I; Hupfer M
    Water Res; 2003 Jul; 37(13):3194-204. PubMed ID: 14509707
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Impacts of sediment disturbance time on the distribution of phosphorus forms in suspended solids].
    Li DP; Huang Y; Li Y; Pan Y
    Huan Jing Ke Xue; 2012 Feb; 33(2):379-84. PubMed ID: 22509570
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling phosphorus exchange between bottom sediment and water in tropical semiarid reservoirs.
    Moura DS; Lima Neto IE; Clemente A; Oliveira S; Pestana CJ; Aparecida de Melo M; Capelo-Neto J
    Chemosphere; 2020 May; 246():125686. PubMed ID: 31918079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of phosphorus (P) removal properties of materials proposed for the control of sediment P release in UK lakes.
    Spears BM; Meis S; Anderson A; Kellou M
    Sci Total Environ; 2013 Jan; 442():103-10. PubMed ID: 23178769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Occurrence of phosphorus, iron, aluminum, silica, and calcium in a eutrophic lake during algae bloom sedimentation.
    Li G; Xie F; Zhang J; Wang J; Yang Y; Sun R
    Water Sci Technol; 2016 Sep; 74(6):1266-1273. PubMed ID: 27685957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of the Lanthanum-Aluminum-Amended Attapulgite Composite as a Novel Inactivation Material to Immobilize Phosphorus in Lake Sediment.
    Yin H; Yang P; Kong M; Li W
    Environ Sci Technol; 2020 Sep; 54(18):11602-11610. PubMed ID: 32815724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characteristics of various forms of phosphorus and their relationships in the sediments of Haizi Lake, China.
    Bi D; Guo X; Cai Z; Gao X; Li Y; Guo J; Long X; Zhong Z; Liang Y
    Water Sci Technol; 2012; 66(12):2688-94. PubMed ID: 23109587
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorus sorption and potential phosphorus storage in sediments of Lake Istokpoga and the upper chain of lakes, Florida, USA.
    Belmont MA; White JR; Reddy KR
    J Environ Qual; 2009; 38(3):987-96. PubMed ID: 19329687
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability.
    Wang C; Yuan N; Pei Y; Jiang HL
    J Environ Manage; 2015 Aug; 159():178-185. PubMed ID: 26071931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Laboratory-determined phosphorus flux from lake sediments as a measure of internal phosphorus loading.
    Ogdahl ME; Steinman AD; Weinert ME
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24637715
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-term efficiency of lake restoration by chemical phosphorus precipitation: Scenario analysis with a phosphorus balance model.
    Hupfer M; Reitzel K; Kleeberg A; Lewandowski J
    Water Res; 2016 Jun; 97():153-61. PubMed ID: 26188421
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Magnetic microparticles as a new tool for lake restoration: A microcosm experiment for evaluating the impact on phosphorus fluxes and sedimentary phosphorus pools.
    Funes A; de Vicente J; Cruz-Pizarro L; Álvarez-Manzaneda I; de Vicente I
    Water Res; 2016 Feb; 89():366-74. PubMed ID: 26724732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioavailable phosphorus (P) reduction is less than mobile P immobilization in lake sediment for eutrophication control by inactivating agents.
    Wang C; He R; Wu Y; Lürling M; Cai H; Jiang HL; Liu X
    Water Res; 2017 Feb; 109():196-206. PubMed ID: 27888776
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Internal phosphorus loading across a cascade of three eutrophic basins: A synthesis of short- and long-term studies.
    Tammeorg O; Horppila J; Tammeorg P; Haldna M; Niemistö J
    Sci Total Environ; 2016 Dec; 572():943-954. PubMed ID: 27519326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retention and internal loading of phosphorus in shallow, eutrophic lakes.
    Sondergaard M; Jensen PJ; Jeppesen E
    ScientificWorldJournal; 2001 Aug; 1():427-42. PubMed ID: 12806078
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Establishing ecological reference conditions and tracking post-application effectiveness of lanthanum-saturated bentonite clay (Phoslock®) for reducing phosphorus in aquatic systems: an applied paleolimnological approach.
    Moos MT; Taffs KH; Longstaff BJ; Ginn BK
    J Environ Manage; 2014 Aug; 141():77-85. PubMed ID: 24768837
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China.
    Wang S; Jin X; Pang Y; Zhao H; Zhou X; Wu F
    J Colloid Interface Sci; 2005 Sep; 289(2):339-46. PubMed ID: 16112221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.