These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24565172)

  • 61. Contrasting effects of MgAl- and MgFe-based layered double hydroxides on phosphorus mobilization and microbial communities in sediment.
    Wu X; Li R; Lin J
    Chemosphere; 2024 Jan; 346():140643. PubMed ID: 37939924
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phosphorus flux from wetland ditch sediments.
    Hill CR; Robinson JS
    Sci Total Environ; 2012 Oct; 437():315-22. PubMed ID: 22954652
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effectiveness and mechanism of aluminum/iron co-modified calcite capping and amendment for controlling phosphorus release from sediments.
    Lei J; Lin J; Zhan Y; Zhang Z; Ma J
    J Environ Manage; 2021 Nov; 298():113471. PubMed ID: 34358942
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reduction of industrial iron pollution promotes phosphorus internal loading in eutrophic Hamilton Harbour, Lake Ontario, Canada.
    Markovic S; Liang A; Watson SB; Depew D; Zastepa A; Surana P; Byllaardt JV; Arhonditsis G; Dittrich M
    Environ Pollut; 2019 Sep; 252(Pt A):697-705. PubMed ID: 31185359
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality.
    Huser BJ; Egemose S; Harper H; Hupfer M; Jensen H; Pilgrim KM; Reitzel K; Rydin E; Futter M
    Water Res; 2016 Jun; 97():122-32. PubMed ID: 26250754
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pool of mobile and immobile phosphorus in sediments of the large, shallow Lake Peipsi over the last 100 years.
    Kapanen G
    Environ Monit Assess; 2012 Nov; 184(11):6749-63. PubMed ID: 22124585
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chironomid larvae enhance phosphorus burial in lake sediments: Insights from long-term and short-term experiments.
    Hupfer M; Jordan S; Herzog C; Ebeling C; Ladwig R; Rothe M; Lewandowski J
    Sci Total Environ; 2019 May; 663():254-264. PubMed ID: 30711592
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu).
    Zhang T; Wang X; Jin X
    Environ Pollut; 2007 Nov; 150(2):288-94. PubMed ID: 17363121
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy.
    Liu J; Wang H; Yang H; Ma Y; Cai O
    Environ Pollut; 2009 Jan; 157(1):49-56. PubMed ID: 18804318
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Phosphorus adsorption on natural sediments: modeling and effects of pH and sediment composition.
    Zhou A; Tang H; Wang D
    Water Res; 2005 Apr; 39(7):1245-54. PubMed ID: 15862324
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Conditions affecting the release of phosphorus from surface lake sediments.
    Christophoridis C; Fytianos K
    J Environ Qual; 2006; 35(4):1181-92. PubMed ID: 16738404
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition.
    Jiang X; Jin X; Yao Y; Li L; Wu F
    Environ Pollut; 2006 Jun; 141(3):482-7. PubMed ID: 16271431
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In-lake measures for phosphorus control: The most feasible and cost-effective solution for long-term management of water quality in urban lakes.
    Huser BJ; Futter M; Lee JT; Perniel M
    Water Res; 2016 Jun; 97():142-52. PubMed ID: 26298078
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of bottom sediments in lakes using hydroacoustic methods and comparison with laboratory measurements.
    Anderson MA; Pacheco P
    Water Res; 2011 Oct; 45(15):4399-408. PubMed ID: 21724221
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment.
    Dittrich M; Gabriel O; Rutzen C; Koschel R
    Sci Total Environ; 2011 Mar; 409(8):1504-15. PubMed ID: 21292312
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Protocol to reconstruct historical contaminant loading to large lakes: the Lake Michigan sediment record of mercury.
    Rossmann R
    Environ Sci Technol; 2010 Feb; 44(3):935-40. PubMed ID: 20030402
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Internal loading of phosphate in Lake Erie Central Basin.
    Paytan A; Roberts K; Watson S; Peek S; Chuang PC; Defforey D; Kendall C
    Sci Total Environ; 2017 Feb; 579():1356-1365. PubMed ID: 27923579
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Phosphorus adsorption on natural sediments with different pH incorporating surface morphology characterization.
    Huang L; Fang H; He G; Chen M
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18883-91. PubMed ID: 27324501
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effects of red soil in removing phosphorus from water column and reducing phosphorus release from sediment in Lake Taihu.
    Dai L; Pan G
    Water Sci Technol; 2014; 69(5):1052-8. PubMed ID: 24622555
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phosphite in sedimentary interstitial water of Lake Taihu, a large eutrophic shallow lake in China.
    Han C; Geng J; Ren H; Gao S; Xie X; Wang X
    Environ Sci Technol; 2013 Jun; 47(11):5679-85. PubMed ID: 23647420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.