These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 24565232)
1. Enhancing the separation performance of the first-generation silica monolith using active flow technology: parallel segmented flow mode of operation. Soliven A; Foley D; Pereira L; Dennis GR; Shalliker RA; Cabrera K; Ritchie H; Edge T J Chromatogr A; 2014 Mar; 1334():16-9. PubMed ID: 24565232 [TBL] [Abstract][Full Text] [Related]
2. Assessing the performance of curtain flow first generation silica monoliths. Soliven A; Foley D; Pereira L; Dennis GR; Shalliker RA; Cabrera K; Ritchie H; Edge T J Chromatogr A; 2014 Jul; 1351():56-60. PubMed ID: 24906299 [TBL] [Abstract][Full Text] [Related]
3. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography. Abia JA; Mriziq KS; Guiochon GA J Chromatogr A; 2009 Apr; 1216(15):3185-91. PubMed ID: 19268295 [TBL] [Abstract][Full Text] [Related]
4. Fast liquid chromatography method for separation of peptides using a sub-2 μm ground silica monolith packed column. Lu Y; Yan Z; Sun G J Sep Sci; 2021 Nov; 44(22):4123-4131. PubMed ID: 34535951 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of a phosphonium ionic liquid on a silica monolith for hydrophilic interaction chromatography. Moravcová D; Planeta J; King AWT; Wiedmer SK J Chromatogr A; 2018 Jun; 1552():53-59. PubMed ID: 29653778 [TBL] [Abstract][Full Text] [Related]
6. Polystyrene bound silica monolith particles of reduced size as stationary phase of excellent separation efficiency in high performance liquid chromatograhy. Ali A; Sun G; Kim JS; Cheong WJ J Chromatogr A; 2019 Jun; 1594():72-81. PubMed ID: 30765127 [TBL] [Abstract][Full Text] [Related]
7. Monolithic silica xerogel capillary column for separations in capillary LC and pressurized CEC. Qu QS; Wang S; Mangelings D; Wang CY; Yang GJ; Hu XY; Yan C Electrophoresis; 2009 Mar; 30(6):1071-6. PubMed ID: 19309008 [TBL] [Abstract][Full Text] [Related]
8. Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns. Hara T; Desmet G; Baron GV; Minakuchi H; Eeltink S J Chromatogr A; 2016 Apr; 1442():42-52. PubMed ID: 26976349 [TBL] [Abstract][Full Text] [Related]
9. Boronic acid-fumed silica nanoparticles incorporated large surface area monoliths for protein separation by nano-liquid chromatography. Aydoğan C Anal Bioanal Chem; 2016 Nov; 408(29):8457-8466. PubMed ID: 27734137 [TBL] [Abstract][Full Text] [Related]
10. Segmented flow and curtain flow chromatography: overcoming the wall effect and heterogeneous bed structures. Shalliker RA; Ritchie H J Chromatogr A; 2014 Mar; 1335():122-35. PubMed ID: 23958688 [TBL] [Abstract][Full Text] [Related]
11. Polystyrene bound stationary phase of excellent separation efficiency based on partially sub-2μm silica monolith particles. Ali F; Cheong WJ; A L Othman ZA; A L Majid AM J Chromatogr A; 2013 Aug; 1303():9-17. PubMed ID: 23849784 [TBL] [Abstract][Full Text] [Related]
12. Morphology and separation efficiency of a new generation of analytical silica monoliths. Hormann K; Müllner T; Bruns S; Höltzel A; Tallarek U J Chromatogr A; 2012 Jan; 1222():46-58. PubMed ID: 22197022 [TBL] [Abstract][Full Text] [Related]
13. Ground, sieved, and C18 modified monolithic silica particles for packing material of microcolumn high-performance liquid chromatography. Ko JH; Baik YS; Park ST; Cheong WJ J Chromatogr A; 2007 Mar; 1144(2):269-74. PubMed ID: 17289065 [TBL] [Abstract][Full Text] [Related]
14. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406 [TBL] [Abstract][Full Text] [Related]
15. Capillary ion chromatography of inorganic anions on octadecyl silica monolith modified with an amphoteric surfactant. O Ríordáin C; Gillespie E; Connolly D; Nesterenko PN; Paull B J Chromatogr A; 2007 Feb; 1142(2):185-93. PubMed ID: 17207491 [TBL] [Abstract][Full Text] [Related]
16. Using active flow technology columns for high through-put and efficient analyses: The drive towards ultra-high through-put high-performance liquid chromatography with mass spectral detection. Kocic D; Shalliker RA J Chromatogr A; 2015 Nov; 1421():60-7. PubMed ID: 26363945 [TBL] [Abstract][Full Text] [Related]
17. Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography. Liu S; Peng J; Zhang H; Li X; Liu Z; Kang X; Wu M; Wu R J Chromatogr A; 2017 May; 1498():64-71. PubMed ID: 28381362 [TBL] [Abstract][Full Text] [Related]
18. Analytical silica monoliths with submicron macropores: current limitations to a direct morphology-column efficiency scaling. Hormann K; Tallarek U J Chromatogr A; 2013 Oct; 1312():26-36. PubMed ID: 24041508 [TBL] [Abstract][Full Text] [Related]
19. Renewing the performance of an expired particle packed column using active flow technology end fittings. Hayman DC; Shalliker RA J Chromatogr A; 2019 Feb; 1586():145-148. PubMed ID: 30553505 [TBL] [Abstract][Full Text] [Related]
20. Sedimentation assisted preparation of ground particles of silica monolith and their C18 modification resulting in a chromatographic phase of improved separation efficiency. Ali A; Ali F; Cheong WJ J Chromatogr A; 2017 Nov; 1525():79-86. PubMed ID: 29030040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]