These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 24565265)

  • 1. Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data.
    Yang TH; Wu WS
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S13. PubMed ID: 24565265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying biologically interpretable transcription factor knockout targets by jointly analyzing the transcription factor knockout microarray and the ChIP-chip data.
    Yang TH; Wu WS
    BMC Syst Biol; 2012 Aug; 6():102. PubMed ID: 22898448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast.
    Yang TH
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):630. PubMed ID: 31881824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A graphical model approach visualizes regulatory relationships between genome-wide transcription factor binding profiles.
    Ng FSL; Ruau D; Wernisch L; Göttgens B
    Brief Bioinform; 2018 Jan; 19(1):162-173. PubMed ID: 27780826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional redundancy of transcription factors explains why most binding targets of a transcription factor are not affected when the transcription factor is knocked out.
    Wu WS; Lai FJ
    BMC Syst Biol; 2015; 9 Suppl 6(Suppl 6):S2. PubMed ID: 26678747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking.
    Wu G; Ji H
    BMC Bioinformatics; 2013 Jun; 14():188. PubMed ID: 23758851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.
    Gomes AL; Wang HH
    PLoS Comput Biol; 2016 Apr; 12(4):e1004891. PubMed ID: 27104615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.
    Guo WL; Huang DS
    Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data.
    Yang CC; Chen MH; Lin SY; Andrews EH; Cheng C; Liu CC; Chen JJ
    BMC Genomics; 2017 Jan; 18(1):61. PubMed ID: 28068916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic identification of yeast cell cycle transcription factors using multiple data sources.
    Wu WS; Li WH
    BMC Bioinformatics; 2008 Dec; 9():522. PubMed ID: 19061501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent functional modules improve transcription factor target identification, cooperativity prediction, and disease association.
    Karczewski KJ; Snyder M; Altman RB; Tatonetti NP
    PLoS Genet; 2014 Feb; 10(2):e1004122. PubMed ID: 24516403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.