These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24565337)

  • 1. Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation.
    Huang YF; Yeh HY; Soo VW
    BMC Med Genomics; 2013; 6 Suppl 3(Suppl 3):S4. PubMed ID: 24565337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LDAI-ISPS: LncRNA-Disease Associations Inference Based on Integrated Space Projection Scores.
    Zhang Y; Chen M; Li A; Cheng X; Jin H; Liu Y
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.
    Shi H; Zhang G; Zhou M; Cheng L; Yang H; Wang J; Sun J; Wang Z
    PLoS One; 2016; 11(2):e0148521. PubMed ID: 26849207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of key pathways and genes in mutant KRAS colorectal cancer by integrated bioinformatics analysis.
    Zhang H; Zhang X; Chen X; Zhang W; Xian J; Zhou X; Yang J; Wang J
    Acta Biochim Biophys Sin (Shanghai); 2018 Jun; 50(6):615-617. PubMed ID: 29688256
    [No Abstract]   [Full Text] [Related]  

  • 7. Use of genome-wide association studies for cancer research and drug repositioning.
    Zhang J; Jiang K; Lv L; Wang H; Shen Z; Gao Z; Wang B; Yang Y; Ye Y; Wang S
    PLoS One; 2015; 10(3):e0116477. PubMed ID: 25803826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug target prioritization by perturbed gene expression and network information.
    Isik Z; Baldow C; Cannistraci CV; Schroeder M
    Sci Rep; 2015 Nov; 5():17417. PubMed ID: 26615774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug target prediction and repositioning using an integrated network-based approach.
    Emig D; Ivliev A; Pustovalova O; Lancashire L; Bureeva S; Nikolsky Y; Bessarabova M
    PLoS One; 2013; 8(4):e60618. PubMed ID: 23593264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking PharmGKB to phenotype studies and animal models of disease for drug repurposing.
    Hoehndorf R; Oellrich A; Rebholz-Schuhmann D; Schofield PN; Gkoutos GV
    Pac Symp Biocomput; 2012; ():388-99. PubMed ID: 22174294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A network-based predictive gene expression signature for recurrence risks in stage II colorectal cancer.
    Yang WJ; Wang HB; Wang WD; Bai PY; Lu HX; Sun CH; Liu ZS; Guan DK; Yang GW; Zhang GL
    Cancer Med; 2020 Jan; 9(1):179-193. PubMed ID: 31724326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Large-Scale Chemically-Induced Transcriptome Data Acquired from LINCS to Study Small Molecules.
    Iwata M; Yamanishi Y
    Methods Mol Biol; 2019; 1888():189-203. PubMed ID: 30519948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NTSMDA: prediction of miRNA-disease associations by integrating network topological similarity.
    Sun D; Li A; Feng H; Wang M
    Mol Biosyst; 2016 Jun; 12(7):2224-32. PubMed ID: 27153230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. INFERENCE OF PERSONALIZED DRUG TARGETS VIA NETWORK PROPAGATION.
    Shnaps O; Perry E; Silverbush D; Sharan R
    Pac Symp Biocomput; 2016; 21():156-67. PubMed ID: 26776182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of genetic variants and gene network for drug repurposing in colorectal cancer.
    Irham LM; Wong HS; Chou WH; Adikusuma W; Mugiyanto E; Huang WC; Chang WC
    Pharmacol Res; 2020 Nov; 161():105203. PubMed ID: 32950641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacogenomics, biomarker network, and allele frequencies in colorectal cancer.
    López-Cortés A; Paz-Y-Miño C; Guerrero S; Jaramillo-Koupermann G; León Cáceres Á; Intriago-Baldeón DP; García-Cárdenas JM; Guevara-Ramírez P; Armendáriz-Castillo I; Leone PE; Quiñones LA; Cayún JP; Soria NW
    Pharmacogenomics J; 2020 Feb; 20(1):136-158. PubMed ID: 31616044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AtPID: a genome-scale resource for genotype-phenotype associations in Arabidopsis.
    Lv Q; Lan Y; Shi Y; Wang H; Pan X; Li P; Shi T
    Nucleic Acids Res; 2017 Jan; 45(D1):D1060-D1063. PubMed ID: 27899679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network-based analysis of prostate cancer cell lines reveals novel marker gene candidates associated with radioresistance and patient relapse.
    Seifert M; Peitzsch C; Gorodetska I; Börner C; Klink B; Dubrovska A
    PLoS Comput Biol; 2019 Nov; 15(11):e1007460. PubMed ID: 31682594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KRAS mutant colorectal cancer gene signatures identified angiotensin II receptor blockers as potential therapies.
    Wen Q; Dunne PD; O'Reilly PG; Li G; Bjourson AJ; McArt DG; Hamilton PW; Zhang SD
    Oncotarget; 2017 Jan; 8(2):3206-3225. PubMed ID: 27965461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.