These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 24565609)
61. Synthesis of α-l-Araf and β-d-Galf series furanobiosides using mutants of a GH51 α-l-arabinofuranosidase. Zhao J; Esque J; André I; O'Donohue MJ; Fauré R Bioorg Chem; 2021 Nov; 116():105245. PubMed ID: 34482168 [TBL] [Abstract][Full Text] [Related]
62. Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Goldsmith M; Aggarwal N; Ashani Y; Jubran H; Greisen PJ; Ovchinnikov S; Leader H; Baker D; Sussman JL; Goldenzweig A; Fleishman SJ; Tawfik DS Protein Eng Des Sel; 2017 Apr; 30(4):333-345. PubMed ID: 28159998 [TBL] [Abstract][Full Text] [Related]
63. Improvement of the versatility of an arabinofuranosidase against galactofuranose for the synthesis of galactofuranoconjugates. Pavic Q; Pillot A; Tasseau O; Legentil L; Tranchimand S Org Biomol Chem; 2019 Jul; 17(28):6799-6808. PubMed ID: 31264667 [TBL] [Abstract][Full Text] [Related]
64. Diversion of a thioglycoligase for the synthesis of 1-O-acyl arabinofuranoses. Pavic Q; Tranchimand S; Lemiègre L; Legentil L Chem Commun (Camb); 2018 May; 54(44):5550-5553. PubMed ID: 29761808 [TBL] [Abstract][Full Text] [Related]
65. SpeedyGenesXL: an Automated, High-Throughput Platform for the Preparation of Bespoke Ultralarge Variant Libraries for Directed Evolution. Sadler JC; Swainston N; Dunstan MS; Currin A; Kell DB Methods Mol Biol; 2022; 2461():67-83. PubMed ID: 35727444 [TBL] [Abstract][Full Text] [Related]
66. Novel α-L-arabinofuranosidase from Cellulomonas fimi ATCC 484 and its substrate-specificity analysis with the aid of computer. Yang Y; Zhang L; Guo M; Sun J; Matsukawa S; Xie J; Wei D J Agric Food Chem; 2015 Apr; 63(14):3725-33. PubMed ID: 25797391 [TBL] [Abstract][Full Text] [Related]
67. Cloning, expression and characterization of a glycoside hydrolase family 51 α-l-arabinofuranosidase from Shi H; Gao F; Yan X; Li Q; Nie X 3 Biotech; 2022 Aug; 12(8):176. PubMed ID: 35855476 [TBL] [Abstract][Full Text] [Related]
68. Directed evolution of the bacterial endo-β-1,4-glucanase from Streptomyces sp. G12 towards improved catalysts for lignocellulose conversion. Cecchini DA; Pepe O; Pennacchio A; Fagnano M; Faraco V AMB Express; 2018 May; 8(1):74. PubMed ID: 29728880 [TBL] [Abstract][Full Text] [Related]
69. Saccharification of newspaper waste after ammonia fiber expansion or extractive ammonia. Montella S; Balan V; da Costa Sousa L; Gunawan C; Giacobbe S; Pepe O; Faraco V AMB Express; 2016 Mar; 6(1):18. PubMed ID: 26936848 [TBL] [Abstract][Full Text] [Related]
70. Identification of the nucleophile catalytic residue of GH51 α-L-arabinofuranosidase from Pleurotus ostreatus. Amore A; Iadonisi A; Vincent F; Faraco V AMB Express; 2015 Dec; 5(1):79. PubMed ID: 26690659 [TBL] [Abstract][Full Text] [Related]
71. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Liguori R; Ventorino V; Pepe O; Faraco V Appl Microbiol Biotechnol; 2016 Jan; 100(2):597-611. PubMed ID: 26572518 [TBL] [Abstract][Full Text] [Related]
72. Assessment of bacterial and fungal (hemi)cellulose-degrading enzymes in saccharification of ammonia fibre expansion-pretreated Arundo donax. Giacobbe S; Balan V; Montella S; Fagnano M; Mori M; Faraco V Appl Microbiol Biotechnol; 2016 Mar; 100(5):2213-24. PubMed ID: 26521250 [TBL] [Abstract][Full Text] [Related]
73. The effect of Pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion. Marcolongo L; Ionata E; La Cara F; Amore A; Giacobbe S; Pepe O; Faraco V Fungal Genet Biol; 2014 Nov; 72():162-167. PubMed ID: 25046861 [TBL] [Abstract][Full Text] [Related]
74. A family GH51 α-L-arabinofuranosidase from Pleurotus ostreatus: identification, recombinant expression and characterization. Amore A; Amoresano A; Birolo L; Henrissat B; Leo G; Palmese A; Faraco V Appl Microbiol Biotechnol; 2012 May; 94(4):995-1006. PubMed ID: 22080345 [TBL] [Abstract][Full Text] [Related]
75. Development of an improved variant of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus by directed evolution. Giacobbe S; Vincent F; Faraco V N Biotechnol; 2014 May; 31(3):230-6. PubMed ID: 24565609 [TBL] [Abstract][Full Text] [Related]
76. Analysis of the role of O-glycosylation in GH51 α-L-arabinofuranosidase from Pleurotus ostreatus. Amore A; Serpico A; Amoresano A; Vinciguerra R; Faraco V Biotechnol Appl Biochem; 2015; 62(6):727-37. PubMed ID: 25471797 [TBL] [Abstract][Full Text] [Related]
77. Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Bissaro B; Saurel O; Arab-Jaziri F; Saulnier L; Milon A; Tenkanen M; Monsan P; O'Donohue MJ; Fauré R Biochim Biophys Acta; 2014 Jan; 1840(1):626-36. PubMed ID: 24140392 [TBL] [Abstract][Full Text] [Related]