BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24566881)

  • 21. Analysis of the CK2-dependent phosphorylation of serine 13 in Cdc37 using a phospho-specific antibody and phospho-affinity gel electrophoresis.
    Miyata Y; Nishida E
    FEBS J; 2007 Nov; 274(21):5690-703. PubMed ID: 17922836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis.
    Pankow S; Bamberger C; Calzolari D; Martínez-Bartolomé S; Lavallée-Adam M; Balch WE; Yates JR
    Nature; 2015 Dec; 528(7583):510-6. PubMed ID: 26618866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Introduction of the most common cystic fibrosis mutation (Delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2002 Aug; 277(31):27585-8. PubMed ID: 12070134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring.
    Townsend RR; Lipniunas PH; Tulk BM; Verkman AS
    Protein Sci; 1996 Sep; 5(9):1865-73. PubMed ID: 8880910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cystic fibrosis as a bowel cancer syndrome and the potential role of CK2.
    Mehta A
    Mol Cell Biochem; 2008 Sep; 316(1-2):169-75. PubMed ID: 18604476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The PEST sequence does not contribute to the stability of the cystic fibrosis transmembrane conductance regulator.
    Chen EY; Clarke DM
    BMC Biochem; 2002 Oct; 3():29. PubMed ID: 12361483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator.
    Nagel G
    Biochim Biophys Acta; 1999 Dec; 1461(2):263-74. PubMed ID: 10581360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells.
    Vilk G; Weber JE; Turowec JP; Duncan JS; Wu C; Derksen DR; Zien P; Sarno S; Donella-Deana A; Lajoie G; Pinna LA; Li SS; Litchfield DW
    Cell Signal; 2008 Nov; 20(11):1942-51. PubMed ID: 18662771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification.
    Xie J; Adams LM; Zhao J; Gerken TA; Davis PB; Ma J
    J Biol Chem; 2002 Jun; 277(25):23019-27. PubMed ID: 11950844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antagonistic regulation of cystic fibrosis transmembrane conductance regulator cell surface expression by protein kinases WNK4 and spleen tyrosine kinase.
    Mendes AI; Matos P; Moniz S; Luz S; Amaral MD; Farinha CM; Jordan P
    Mol Cell Biol; 2011 Oct; 31(19):4076-86. PubMed ID: 21807898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508.
    DeCarvalho AC; Gansheroff LJ; Teem JL
    J Biol Chem; 2002 Sep; 277(39):35896-905. PubMed ID: 12110684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein kinase CK2 interacts with Chk2 and phosphorylates Mre11 on serine 649.
    Kim ST
    Biochem Biophys Res Commun; 2005 May; 331(1):247-52. PubMed ID: 15845385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of the localization of STE6/CFTR chimeras in a Saccharomyces cerevisiae model for the cystic fibrosis defect CFTR delta F508.
    Paddon C; Loayza D; Vangelista L; Solari R; Michaelis S
    Mol Microbiol; 1996 Mar; 19(5):1007-17. PubMed ID: 8830258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The gating of the CFTR channel.
    Moran O
    Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function.
    Pasyk EA; Morin XK; Zeman P; Garami E; Galley K; Huan LJ; Wang Y; Bear CE
    J Biol Chem; 1998 Nov; 273(48):31759-64. PubMed ID: 9822639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator.
    Younger JM; Chen L; Ren HY; Rosser MF; Turnbull EL; Fan CY; Patterson C; Cyr DM
    Cell; 2006 Aug; 126(3):571-82. PubMed ID: 16901789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.
    Lewis HA; Zhao X; Wang C; Sauder JM; Rooney I; Noland BW; Lorimer D; Kearins MC; Conners K; Condon B; Maloney PC; Guggino WB; Hunt JF; Emtage S
    J Biol Chem; 2005 Jan; 280(2):1346-53. PubMed ID: 15528182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calnexin Delta 185-520 partially reverses the misprocessing of the Delta F508 cystic fibrosis transmembrane conductance regulator.
    Okiyoneda T; Wada I; Jono H; Shuto T; Yoshitake K; Nakano N; Nagayama S; Harada K; Isohama Y; Miyata T; Kai H
    FEBS Lett; 2002 Aug; 526(1-3):87-92. PubMed ID: 12208510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defects in processing and trafficking of cystic fibrosis transmembrane conductance regulator.
    Kunzelmann K; Nitschke R
    Exp Nephrol; 2000; 8(6):332-42. PubMed ID: 11014930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.