These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
452 related articles for article (PubMed ID: 24567072)
1. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. Gammage PA; Rorbach J; Vincent AI; Rebar EJ; Minczuk M EMBO Mol Med; 2014 Apr; 6(4):458-66. PubMed ID: 24567072 [TBL] [Abstract][Full Text] [Related]
2. A magic bullet to specifically eliminate mutated mitochondrial genomes from patients' cells. Moraes CT EMBO Mol Med; 2014 Apr; 6(4):434-5. PubMed ID: 24623377 [TBL] [Abstract][Full Text] [Related]
3. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Hashimoto M; Bacman SR; Peralta S; Falk MJ; Chomyn A; Chan DC; Williams SL; Moraes CT Mol Ther; 2015 Oct; 23(10):1592-9. PubMed ID: 26159306 [TBL] [Abstract][Full Text] [Related]
4. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Minczuk M; Papworth MA; Miller JC; Murphy MP; Klug A Nucleic Acids Res; 2008 Jul; 36(12):3926-38. PubMed ID: 18511461 [TBL] [Abstract][Full Text] [Related]
5. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. Tonin Y; Heckel AM; Vysokikh M; Dovydenko I; Meschaninova M; Rötig A; Munnich A; Venyaminova A; Tarassov I; Entelis N J Biol Chem; 2014 May; 289(19):13323-34. PubMed ID: 24692550 [TBL] [Abstract][Full Text] [Related]
6. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Bacman SR; Williams SL; Pinto M; Peralta S; Moraes CT Nat Med; 2013 Sep; 19(9):1111-3. PubMed ID: 23913125 [TBL] [Abstract][Full Text] [Related]
7. Manipulation of Murine Mitochondrial DNA Heteroplasmy with mtZFNs. Nash PA; Minczuk M Methods Mol Biol; 2023; 2615():329-344. PubMed ID: 36807802 [TBL] [Abstract][Full Text] [Related]
8. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Gammage PA; Gaude E; Van Haute L; Rebelo-Guiomar P; Jackson CB; Rorbach J; Pekalski ML; Robinson AJ; Charpentier M; Concordet JP; Frezza C; Minczuk M Nucleic Acids Res; 2016 Sep; 44(16):7804-16. PubMed ID: 27466392 [TBL] [Abstract][Full Text] [Related]
9. Modulating Mitochondrial DNA Heteroplasmy with Mitochondrially Targeted Endonucleases. Mikhailov N; Hämäläinen RH Ann Biomed Eng; 2024 Sep; 52(9):2627-2640. PubMed ID: 36001180 [TBL] [Abstract][Full Text] [Related]
10. Engineered mtZFNs for Manipulation of Human Mitochondrial DNA Heteroplasmy. Gammage PA; Van Haute L; Minczuk M Methods Mol Biol; 2016; 1351():145-62. PubMed ID: 26530680 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. Nissanka N; Moraes CT EMBO Rep; 2020 Mar; 21(3):e49612. PubMed ID: 32073748 [TBL] [Abstract][Full Text] [Related]
12. Delivery of mtZFNs into Early Mouse Embryos. McCann BJ; Cox A; Gammage PA; Stewart JB; Zernicka-Goetz M; Minczuk M Methods Mol Biol; 2018; 1867():215-228. PubMed ID: 30155826 [TBL] [Abstract][Full Text] [Related]
13. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Suen DF; Narendra DP; Tanaka A; Manfredi G; Youle RJ Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11835-40. PubMed ID: 20547844 [TBL] [Abstract][Full Text] [Related]
14. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Pereira CV; Moraes CT Front Biosci (Landmark Ed); 2017 Jan; 22(6):991-1010. PubMed ID: 27814659 [TBL] [Abstract][Full Text] [Related]
15. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Srivastava S; Moraes CT Hum Mol Genet; 2001 Dec; 10(26):3093-9. PubMed ID: 11751691 [TBL] [Abstract][Full Text] [Related]
16. Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA. Tonin Y; Heckel AM; Dovydenko I; Meschaninova M; Comte C; Venyaminova A; Pyshnyi D; Tarassov I; Entelis N Biochimie; 2014 May; 100():192-9. PubMed ID: 23994754 [TBL] [Abstract][Full Text] [Related]
17. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. Tanaka M; Borgeld HJ; Zhang J; Muramatsu S; Gong JS; Yoneda M; Maruyama W; Naoi M; Ibi T; Sahashi K; Shamoto M; Fuku N; Kurata M; Yamada Y; Nishizawa K; Akao Y; Ohishi N; Miyabayashi S; Umemoto H; Muramatsu T; Furukawa K; Kikuchi A; Nakano I; Ozawa K; Yagi K J Biomed Sci; 2002; 9(6 Pt 1):534-41. PubMed ID: 12372991 [TBL] [Abstract][Full Text] [Related]
18. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Alexeyev MF; Venediktova N; Pastukh V; Shokolenko I; Bonilla G; Wilson GL Gene Ther; 2008 Apr; 15(7):516-23. PubMed ID: 18256697 [TBL] [Abstract][Full Text] [Related]
19. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Gammage PA; Viscomi C; Simard ML; Costa ASH; Gaude E; Powell CA; Van Haute L; McCann BJ; Rebelo-Guiomar P; Cerutti R; Zhang L; Rebar EJ; Zeviani M; Frezza C; Stewart JB; Minczuk M Nat Med; 2018 Nov; 24(11):1691-1695. PubMed ID: 30250142 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial disorders: Understanding mitochondrial DNA point mutations and deletion syndromes. Heuer B; Seibert DC J Am Assoc Nurse Pract; 2022 Aug; 34(8):954-956. PubMed ID: 36330549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]