BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24567223)

  • 21. The MicrobesOnline Web site for comparative genomics.
    Alm EJ; Huang KH; Price MN; Koche RP; Keller K; Dubchak IL; Arkin AP
    Genome Res; 2005 Jul; 15(7):1015-22. PubMed ID: 15998914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete sequence of the mitochondrial DNA in the sea urchin Arbacia lixula: conserved features of the echinoid mitochondrial genome.
    De Giorgi C; Martiradonna A; Lanave C; Saccone C
    Mol Phylogenet Evol; 1996 Apr; 5(2):323-32. PubMed ID: 8728390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HpBase: A genome database of a sea urchin, Hemicentrotus pulcherrimus.
    Kinjo S; Kiyomoto M; Yamamoto T; Ikeo K; Yaguchi S
    Dev Growth Differ; 2018 Apr; 60(3):174-182. PubMed ID: 29532461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization of actin gene sequences in the sea urchin: molecular cloning of an intron-containing DNA sequence coding for a cytoplasmic actin.
    Durica DS; Schloss JA; Crain WR
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5683-7. PubMed ID: 6777773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model.
    Nesbit KT; Fleming T; Batzel G; Pouv A; Rosenblatt HD; Pace DA; Hamdoun A; Lyons DC
    Methods Cell Biol; 2019; 150():105-123. PubMed ID: 30777173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of protein components from the mature ovary of the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea).
    Sewell MA; Eriksen S; Middleditch MJ
    Proteomics; 2008 Jun; 8(12):2531-42. PubMed ID: 18563751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Genome sequencing in the sea urchin embryo: what is new concerning the cell cycle?].
    Genevière AM; Aze A; Even Y
    J Soc Biol; 2007; 201(1):31-40. PubMed ID: 17762822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.
    Cui M; Lin CY; Su YH
    Brief Funct Genomics; 2017 Sep; 16(5):309-318. PubMed ID: 28605407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of the Spec1 gene encoding a major calcium-binding protein in the embryonic ectoderm of the sea urchin, Strongylocentrotus purpuratus.
    Hardin SH; Carpenter CD; Hardin PE; Bruskin AM; Klein WH
    J Mol Biol; 1985 Nov; 186(2):243-55. PubMed ID: 2935638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A view from the genome: spatial control of transcription in sea urchin development.
    Davidson EH
    Curr Opin Genet Dev; 1999 Oct; 9(5):530-41. PubMed ID: 10508696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shedding genomic light on Aristotle's lantern.
    Sodergren E; Shen Y; Song X; Zhang L; Gibbs RA; Weinstock GM
    Dev Biol; 2006 Dec; 300(1):2-8. PubMed ID: 17097628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and evolution of CyI cytoplasmic actin-encoding genes in the indirect- and direct-developing sea urchins Heliocidaris tuberculata and Heliocidaris erythrogramma.
    Hahn JH; Kissinger JC; Raff RA
    Gene; 1995 Feb; 153(2):219-24. PubMed ID: 7875592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of late H2A, H2B, and H4 histone genes of the sea urchin, Strongylocentrotus purpuratus.
    Maxson R; Mohun T; Gormezano G; Kedes L
    Nucleic Acids Res; 1987 Dec; 15(24):10569-82. PubMed ID: 3697096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SpCOUP-TF: a sea urchin member of the steroid/thyroid hormone receptor family.
    Chan SM; Xu N; Niemeyer CC; Bone JR; Flytzanis CN
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10568-72. PubMed ID: 1438252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription of the sea urchin U6 gene in vitro requires a TATA-like box, a proximal sequence element, and sea urchin USF, which binds an essential E box.
    Li JM; Parsons RA; Marzluff WF
    Mol Cell Biol; 1994 Mar; 14(3):2191-200. PubMed ID: 8114749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin.
    Yuh CH; Brown CT; Livi CB; Rowen L; Clarke PJ; Davidson EH
    Dev Biol; 2002 Jun; 246(1):148-61. PubMed ID: 12027440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paircomp, FamilyRelationsII and Cartwheel: tools for interspecific sequence comparison.
    Brown CT; Xie Y; Davidson EH; Cameron RA
    BMC Bioinformatics; 2005 Mar; 6():70. PubMed ID: 15790396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TrBase: A genome and transcriptome database of Temnopleurus reevesii.
    Kinjo S; Kiyomoto M; Suzuki H; Yamamoto T; Ikeo K; Yaguchi S
    Dev Growth Differ; 2022 May; 64(4):210-218. PubMed ID: 35451498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.