These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24567506)

  • 21. Deletion of the distal C terminus of CaV1.2 channels leads to loss of beta-adrenergic regulation and heart failure in vivo.
    Fu Y; Westenbroek RE; Yu FH; Clark JP; Marshall MR; Scheuer T; Catterall WA
    J Biol Chem; 2011 Apr; 286(14):12617-26. PubMed ID: 21216955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Src homology 2 domain-containing phosphatase 2 (Shp2) is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex and is inhibited by protein kinase A (PKA) under pathological hypertrophic conditions in the heart.
    Burmeister BT; Taglieri DM; Wang L; Carnegie GK
    J Biol Chem; 2012 Nov; 287(48):40535-46. PubMed ID: 23045525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15.
    Hulme JT; Lin TW; Westenbroek RE; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):13093-8. PubMed ID: 14569017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C.
    Kamp TJ; Hell JW
    Circ Res; 2000 Dec; 87(12):1095-102. PubMed ID: 11110765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A-kinase anchoring protein targeting of protein kinase A and regulation of HERG channels.
    Li Y; Sroubek J; Krishnan Y; McDonald TV
    J Membr Biol; 2008 May; 223(2):107-16. PubMed ID: 18679741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A-kinase anchoring proteins: scaffolding proteins in the heart.
    Diviani D; Dodge-Kafka KL; Li J; Kapiloff MS
    Am J Physiol Heart Circ Physiol; 2011 Nov; 301(5):H1742-53. PubMed ID: 21856912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective disruption of the AKAP signaling complexes.
    Kennedy EJ; Scott JD
    Methods Mol Biol; 2015; 1294():137-50. PubMed ID: 25783883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism of convergent regulation of brain Na(+) channels by protein kinase C and protein kinase A anchored to AKAP-15.
    Cantrell AR; Tibbs VC; Yu FH; Murphy BJ; Sharp EM; Qu Y; Catterall WA; Scheuer T
    Mol Cell Neurosci; 2002 Sep; 21(1):63-80. PubMed ID: 12359152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function.
    Hulme JT; Ahn M; Hauschka SD; Scheuer T; Catterall WA
    J Biol Chem; 2002 Feb; 277(6):4079-87. PubMed ID: 11733497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk.
    Schott MB; Gonowolo F; Maliske B; Grove B
    Cell Signal; 2016 Apr; 28(4):294-306. PubMed ID: 26772752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receptor-mediated Ca2+ and PKC signaling triggers the loss of cortical PKA compartmentalization through the redistribution of gravin.
    Schott MB; Grove B
    Cell Signal; 2013 Nov; 25(11):2125-35. PubMed ID: 23838009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential therapeutic applications of AKAP disrupting peptides.
    Murabito A; Cnudde S; Hirsch E; Ghigo A
    Clin Sci (Lond); 2020 Dec; 134(24):3259-3282. PubMed ID: 33346357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic AMP and AKAP-mediated targeting of protein kinase A regulates lactate dehydrogenase subunit A mRNA stability.
    Jungmann RA; Kiryukhina O
    J Biol Chem; 2005 Jul; 280(26):25170-7. PubMed ID: 15878851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein kinase A activity and anchoring are required for ovarian cancer cell migration and invasion.
    McKenzie AJ; Campbell SL; Howe AK
    PLoS One; 2011; 6(10):e26552. PubMed ID: 22028904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localized calcineurin confers Ca2+-dependent inactivation on neuronal L-type Ca2+ channels.
    Oliveria SF; Dittmer PJ; Youn DH; Dell'Acqua ML; Sather WA
    J Neurosci; 2012 Oct; 32(44):15328-37. PubMed ID: 23115171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaffolding during the cell cycle by A-kinase anchoring proteins.
    Han B; Poppinga WJ; Schmidt M
    Pflugers Arch; 2015 Dec; 467(12):2401-11. PubMed ID: 26202611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2.
    Bendzunas NG; Dörfler S; Autenrieth K; Bertinetti D; Machal EMF; Kennedy EJ; Herberg FW
    Bioorg Med Chem; 2018 Mar; 26(6):1174-1178. PubMed ID: 29449124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Promotion of PDGF-induced endothelial cell migration by phosphorylated VASP depends on PKA anchoring via AKAP.
    Zhang D; Ouyang J; Wang N; Zhang Y; Bie J; Zhang Y
    Mol Cell Biochem; 2010 Feb; 335(1-2):1-11. PubMed ID: 19711176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plugging PKA into ERK scaffolds.
    Smith FD; Langeberg LK; Scott JD
    Cell Cycle; 2011 Mar; 10(5):731-2. PubMed ID: 21311231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Through a glass darkly.
    Hall JE
    EMBO Mol Med; 2012 Jan; 4(1):1-2. PubMed ID: 22180285
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.