These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 2456757)

  • 1. Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an H+ conducting channel.
    Henderson LM; Chappell JB; Jones OT
    Biochem J; 1988 Apr; 251(2):563-7. PubMed ID: 2456757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge.
    Henderson LM; Chappell JB; Jones OT
    Biochem J; 1988 Oct; 255(1):285-90. PubMed ID: 2848506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel.
    Henderson LM; Chappell JB; Jones OT
    Biochem J; 1987 Sep; 246(2):325-9. PubMed ID: 2825632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phorbol 12-myristate 13-acetate activates an electrogenic H(+)-conducting pathway in the membrane of neutrophils.
    Kapus A; Szászi K; Ligeti E
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):697-701. PubMed ID: 1371386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic pH regulation in phorbol ester-activated human neutrophils.
    Grinstein S; Furuya W
    Am J Physiol; 1986 Jul; 251(1 Pt 1):C55-65. PubMed ID: 2425631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of NADPH-oxidase and its associated whole-cell H+ current in human neutrophils by recombinant human tumor necrosis factor alpha and formyl-methionyl-leucyl-phenylalanine.
    Schumann MA; Leung CC; Raffin TA
    J Biol Chem; 1995 Jun; 270(22):13124-32. PubMed ID: 7539423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymphocytes possess an electrogenic H(+)-transporting pathway in their plasma membrane.
    Káldi K; Szászi K; Suszták K; Kapus A; Ligeti E
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):329-34. PubMed ID: 7519007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of a lipid thiobis ester from human neutrophil cytosol that reversibly deactivates the O2- -generating NADPH oxidase.
    Eklund EA; Gabig TG
    J Biol Chem; 1990 May; 265(15):8426-30. PubMed ID: 2160458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delineation of the catalytic components of the NADPH-dependent O2- generating oxidoreductase of human neutrophils.
    Green TR; Wirtz MK; Wu DE
    Biochem Biophys Res Commun; 1983 Feb; 110(3):873-9. PubMed ID: 6301466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogenic H+ pathway contributes to stimulus-induced changes of internal pH and membrane potential in intact neutrophils: role of cytoplasmic phospholipase A2.
    Suszták K; Mócsai A; Ligeti E; Kapus A
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):501-10. PubMed ID: 9230134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular pH regulation during spreading of human neutrophils.
    Demaurex N; Downey GP; Waddell TK; Grinstein S
    J Cell Biol; 1996 Jun; 133(6):1391-402. PubMed ID: 8682873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activation of the electrogenic NADPH oxidase.
    Chappell JB; Henderson LM
    Biochem Soc Trans; 1991 Feb; 19(1):67-70. PubMed ID: 1645320
    [No Abstract]   [Full Text] [Related]  

  • 13. Abnormal activation of H+ conductance in NADPH oxidase-defective neutrophils.
    Nanda A; Grinstein S; Curnutte JT
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):760-4. PubMed ID: 8421713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes.
    Light DR; Walsh C; O'Callaghan AM; Goetzl EJ; Tauber AI
    Biochemistry; 1981 Mar; 20(6):1468-76. PubMed ID: 6261795
    [No Abstract]   [Full Text] [Related]  

  • 15. Hyperphosphorylated p47-phox lost the ability to activate NADPH oxidase in guinea pig neutrophils.
    Yamaguchi M; Saeki S; Yamane H; Okamura N; Ishibashi S
    Biochem Biophys Res Commun; 1995 Nov; 216(1):203-8. PubMed ID: 7488090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase in human and porcine neutrophils: stoichiometry between O2 consumption and O2- formation.
    Ishimura Y; Makino R; Tanaka T; Iizuka T; Kanegasaki S
    Prog Clin Biol Res; 1988; 274():179-90. PubMed ID: 2841670
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of the electrogenic H+ channel in the plasma membrane of neutrophils: possible role of phospholipase A2, internal and external protons.
    Kapus A; Suszták K; Ligeti E
    Biochem J; 1993 Jun; 292 ( Pt 2)(Pt 2):445-50. PubMed ID: 7684901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate.
    Suzuki Y; Lehrer RI
    J Clin Invest; 1980 Dec; 66(6):1409-18. PubMed ID: 6255012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of human neutrophil NADPH oxidase and lateral mobility of membrane proteins. A study with crosslinkers.
    Aviram I; Henis YI
    Biochim Biophys Acta; 1984 Oct; 805(2):227-31. PubMed ID: 6091778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The O2.- generating oxidase activation of bovine neutrophils. Evidence for synergism of multiple cytosolic factors in a cell-free system.
    Pilloud MC; Doussiere J; Vignais PV
    FEBS Lett; 1989 Oct; 257(1):167-70. PubMed ID: 2553488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.