BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 24567729)

  • 1. Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications.
    Ceccoli RD; Bianchi DA; Rial DV
    Front Microbiol; 2014; 5():25. PubMed ID: 24567729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavoprotein monooxygenases: Versatile biocatalysts.
    Paul CE; Eggerichs D; Westphal AH; Tischler D; van Berkel WJH
    Biotechnol Adv; 2021 Nov; 51():107712. PubMed ID: 33588053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Baeyer-Villiger monooxygenases in the biosynthesis of microbial secondary metabolites].
    Li Y; Yang X; Deng Z; Zhu D
    Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):351-362. PubMed ID: 30912344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts.
    van Berkel WJ; Kamerbeek NM; Fraaije MW
    J Biotechnol; 2006 Aug; 124(4):670-89. PubMed ID: 16712999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining the Genome of
    Gran-Scheuch A; Trajkovic M; Parra L; Fraaije MW
    Front Microbiol; 2018; 9():1609. PubMed ID: 30072972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities.
    Heine T; van Berkel WJH; Gassner G; van Pée KH; Tischler D
    Biology (Basel); 2018 Aug; 7(3):. PubMed ID: 30072664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis.
    Tischler D; Kumpf A; Eggerichs D; Heine T
    Enzymes; 2020; 47():399-425. PubMed ID: 32951830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of the Type I Baeyer-Villiger monooxygenase from Leptospira biflexa.
    Ceccoli RD; Bianchi DA; Fink MJ; Mihovilovic MD; Rial DV
    AMB Express; 2017 Dec; 7(1):87. PubMed ID: 28452041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases.
    Toplak M; Matthews A; Teufel R
    Arch Biochem Biophys; 2021 Feb; 698():108732. PubMed ID: 33358998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavin dependent monooxygenases.
    Huijbers MM; Montersino S; Westphal AH; Tischler D; van Berkel WJ
    Arch Biochem Biophys; 2014 Feb; 544():2-17. PubMed ID: 24361254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides.
    Zhang Y; Liu F; Xu N; Wu YQ; Zheng YC; Zhao Q; Lin G; Yu HL; Xu JH
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications.
    Schmidt S; Bornscheuer UT
    Enzymes; 2020; 47():231-281. PubMed ID: 32951825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the catalytic mechanism at the dawn of the Baeyer-Villiger monooxygenases.
    Yang G; Pećanac O; Wijma HJ; Rozeboom HJ; de Gonzalo G; Fraaije MW; Mascotti ML
    Cell Rep; 2024 May; 43(5):114130. PubMed ID: 38640062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase VpIndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations.
    Kratky J; Eggerichs D; Heine T; Hofmann S; Sowa P; Weiße RH; Tischler D; Sträter N
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202300657. PubMed ID: 36762980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
    de Gonzalo G; Mihovilovic MD; Fraaije MW
    Chembiochem; 2010 Nov; 11(16):2208-31. PubMed ID: 20936617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalysis with Escherichia coli-overexpressing cyclopentanone monooxygenase immobilized in polyvinyl alcohol gel.
    Rebroš M; Lipták L; Rosenberg M; Bučko M; Gemeiner P
    Lett Appl Microbiol; 2014 Jun; 58(6):556-63. PubMed ID: 24494800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products.
    Toplak M; Teufel R
    Biochemistry; 2022 Jan; 61(2):47-56. PubMed ID: 34962769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations.
    Bordewick S; Beier A; Balke K; Bornscheuer UT
    Enzyme Microb Technol; 2018 Feb; 109():31-42. PubMed ID: 29224624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications.
    Torres Pazmiño DE; Winkler M; Glieder A; Fraaije MW
    J Biotechnol; 2010 Mar; 146(1-2):9-24. PubMed ID: 20132846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.