These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24567729)

  • 21. Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase.
    Liu YY; Li CX; Xu JH; Zheng GW
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Baeyer-Villiger oxidations: biotechnological approach.
    Bučko M; Gemeiner P; Schenkmayerová A; Krajčovič T; Rudroff F; Mihovilovič MD
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6585-6599. PubMed ID: 27328941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach.
    Musumeci MA; Lozada M; Rial DV; Mac Cormack WP; Jansson JK; Sjöling S; Carroll J; Dionisi HM
    Mar Drugs; 2017 Apr; 15(4):. PubMed ID: 28397770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Type II flavoprotein monooxygenase PsFMO_A from the bacterium Pimelobacter sp. Bb-B catalyzes enantioselective Baeyer-Villiger oxidations with a relaxed cofactor specificity.
    Löwe J; Blifernez-Klassen O; Baier T; Wobbe L; Kruse O; Gröger H
    J Biotechnol; 2019 Mar; 294():81-87. PubMed ID: 30703472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A flavoprotein monooxygenase that catalyses a Baeyer-Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor.
    Jensen CN; Cartwright J; Ward J; Hart S; Turkenburg JP; Ali ST; Allen MJ; Grogan G
    Chembiochem; 2012 Apr; 13(6):872-8. PubMed ID: 22416037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Baeyer-Villiger monooxygenases: recent advances and future challenges.
    Torres Pazmiño DE; Dudek HM; Fraaije MW
    Curr Opin Chem Biol; 2010 Apr; 14(2):138-44. PubMed ID: 20015679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flavin-dependent N-hydroxylating enzymes: distribution and application.
    Mügge C; Heine T; Baraibar AG; van Berkel WJH; Paul CE; Tischler D
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6481-6499. PubMed ID: 32504128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in biocatalyst discovery, development and applications.
    Yang G; Ding Y
    Bioorg Med Chem; 2014 Oct; 22(20):5604-12. PubMed ID: 25042559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases.
    Balke K; Beier A; Bornscheuer UT
    Biotechnol Adv; 2018; 36(1):247-263. PubMed ID: 29174001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase.
    Franceschini S; van Beek HL; Pennetta A; Martinoli C; Fraaije MW; Mattevi A
    J Biol Chem; 2012 Jun; 287(27):22626-34. PubMed ID: 22605340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Access to Medium-Chain α,ω-Dicarboxylic Acids by Using a Baeyer-Villiger Monooxygenase of Abnormal Regioselectivity.
    Yu JM; Liu YY; Zheng YC; Li H; Zhang XY; Zheng GW; Li CX; Bai YP; Xu JH
    Chembiochem; 2018 Oct; 19(19):2049-2054. PubMed ID: 30025196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study of N-hydroxylating flavoprotein monooxygenases reveals differences in kinetics and cofactor binding.
    Ernst S; Mährlein A; Ritzmann NH; Drees SL; Fetzner S
    FEBS J; 2022 Sep; 289(18):5637-5655. PubMed ID: 35313078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.
    Heine T; Tucker K; Okonkwo N; Assefa B; Conrad C; Scholtissek A; Schlömann M; Gassner G; Tischler D
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1590-1610. PubMed ID: 27830466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blending Baeyer-Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties.
    van Beek HL; de Gonzalo G; Fraaije MW
    Chem Commun (Camb); 2012 Apr; 48(27):3288-90. PubMed ID: 22286124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flavoenzymes for biocatalysis.
    Hall M
    Enzymes; 2020; 47():37-62. PubMed ID: 32951829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of two styrene monooxygenases from marine microbes.
    Pu W; Cui C; Guo C; Wu ZL
    Enzyme Microb Technol; 2018 May; 112():29-34. PubMed ID: 29499777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First chemo-enzymatic synthesis of the (
    Rudroff F; Fink MJ; Pydi R; Bornscheuer UT; Mihovilovic MD
    Monatsh Chem; 2017; 148(1):157-165. PubMed ID: 28127101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions.
    Iwaki H; Grosse S; Bergeron H; Leisch H; Morley K; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2013 May; 79(10):3282-93. PubMed ID: 23524667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterised Flavin-Dependent Two-Component Monooxygenases from the CAM Plasmid of
    Willetts A
    Microorganisms; 2018 Dec; 7(1):. PubMed ID: 30577535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indigoid dyes by group E monooxygenases: mechanism and biocatalysis.
    Heine T; Großmann C; Hofmann S; Tischler D
    Biol Chem; 2019 Jun; 400(7):939-950. PubMed ID: 30844759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.