These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24567729)

  • 41. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions.
    Iwaki H; Grosse S; Bergeron H; Leisch H; Morley K; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2013 May; 79(10):3282-93. PubMed ID: 23524667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Indigoid dyes by group E monooxygenases: mechanism and biocatalysis.
    Heine T; Großmann C; Hofmann S; Tischler D
    Biol Chem; 2019 Jun; 400(7):939-950. PubMed ID: 30844759
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of a thermostable Baeyer-Villiger monooxygenase for the synthesis of branched polyester precursors.
    Delgove MA; Elford MT; Bernaerts KV; De Wildeman SM
    J Chem Technol Biotechnol; 2018 Aug; 93(8):2131-2140. PubMed ID: 30069077
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Cold-Active Flavin-Dependent Monooxygenase from
    Chánique AM; Polidori N; Sovic L; Kracher D; Assil-Companioni L; Galuska P; Parra LP; Gruber K; Kourist R
    ACS Catal; 2023 Mar; 13(6):3549-3562. PubMed ID: 36970468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R
    J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial Flavoprotein Monooxygenases as Mimics of Mammalian Flavin-Containing Monooxygenases for the Enantioselective Preparation of Drug Metabolites.
    Gul T; Krzek M; Permentier HP; Fraaije MW; Bischoff R
    Drug Metab Dispos; 2016 Aug; 44(8):1270-6. PubMed ID: 26984198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids).
    Park H; Park G; Jeon W; Ahn JO; Yang YH; Choi KY
    Biotechnol Adv; 2020; 40():107504. PubMed ID: 31926255
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation.
    Catucci G; Zgrablic I; Lanciani F; Valetti F; Minerdi D; Ballou DP; Gilardi G; Sadeghi SJ
    Biochim Biophys Acta; 2016 Sep; 1864(9):1177-1187. PubMed ID: 27344049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenolic hydroxylases.
    Chenprakhon P; Pimviriyakul P; Tongsook C; Chaiyen P
    Enzymes; 2020; 47():283-326. PubMed ID: 32951826
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of catalysis in flavin-dependent monooxygenases.
    Palfey BA; McDonald CA
    Arch Biochem Biophys; 2010 Jan; 493(1):26-36. PubMed ID: 19944667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The analysis and application of a recombinant monooxygenase library as a biocatalyst for the Baeyer-Villiger reaction.
    Park J; Kim D; Kim S; Kim J; Bae K; Lee C
    J Microbiol Biotechnol; 2007 Jul; 17(7):1083-9. PubMed ID: 18051317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein engineering of stereoselective Baeyer-Villiger monooxygenases.
    Zhang ZG; Parra LP; Reetz MT
    Chemistry; 2012 Aug; 18(33):10160-72. PubMed ID: 22807240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase.
    Tischler D; Schlömann M; van Berkel WJ; Gassner GT
    FEBS Lett; 2013 Nov; 587(23):3848-52. PubMed ID: 24157359
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization.
    Orru R; Dudek HM; Martinoli C; Torres Pazmiño DE; Royant A; Weik M; Fraaije MW; Mattevi A
    J Biol Chem; 2011 Aug; 286(33):29284-29291. PubMed ID: 21697090
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial enzymes for oxidation of organic molecules.
    Sariaslani FS
    Crit Rev Biotechnol; 1989; 9(3):171-257. PubMed ID: 2514043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases.
    Torres Pazmiño DE; Riebel A; de Lange J; Rudroff F; Mihovilovic MD; Fraaije MW
    Chembiochem; 2009 Nov; 10(16):2595-8. PubMed ID: 19795432
    [No Abstract]   [Full Text] [Related]  

  • 58. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A generic, whole-cell-based screening method for Baeyer-Villiger monooxygenases.
    Dudek HM; Popken P; van Bloois E; Duetz WA; Fraaije MW
    J Biomol Screen; 2013 Jul; 18(6):678-87. PubMed ID: 23536548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Isoenzymic Diketocamphane Monooxygenases of
    Willetts A
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.