These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 2456789)
1. Isoproterenol-induced desensitization of mucin release in isolated rat submandibular acini. Bradbury NA; McPherson MA Biochim Biophys Acta; 1988 Jul; 970(3):363-70. PubMed ID: 2456789 [TBL] [Abstract][Full Text] [Related]
2. Mucin release and calcium fluxes in isolated rat submandibular acini. McPherson MA; Dormer RL Biochem J; 1984 Dec; 224(2):473-81. PubMed ID: 6097220 [TBL] [Abstract][Full Text] [Related]
3. Actions of prostaglandins E2 and F2 alpha on release of 14C-labelled mucins from rat submandibular salivary acini in vitro. Bradbury NA; McPherson MA Arch Oral Biol; 1987; 32(10):719-22. PubMed ID: 3482153 [TBL] [Abstract][Full Text] [Related]
4. Association of increased polyamine levels with isoproterenol-stimulated mucin secretion in the rat submandibular gland. Blume GB; Koenig H; Goldstone AD Biochem Biophys Res Commun; 1985 Oct; 132(1):118-25. PubMed ID: 2998352 [TBL] [Abstract][Full Text] [Related]
5. Introduction of cyclic AMP phosphodiesterase into rat submandibular acini prevents isoproterenol-stimulated cyclic AMP rise without affecting mucin secretion. Bradbury NA; Dormer RL; McPherson MA Biochem Biophys Res Commun; 1989 Jun; 161(2):661-71. PubMed ID: 2544168 [TBL] [Abstract][Full Text] [Related]
6. Adrenergic secretory responses of submandibular tissues from control subjects and cystic fibrosis patients. McPherson MA; Dormer RL; Dodge JA; Goodchild MC Clin Chim Acta; 1985 Jun; 148(3):229-37. PubMed ID: 2412733 [TBL] [Abstract][Full Text] [Related]
7. Introduction of BAPTA into intact rat submandibular acini inhibits mucin secretion in response to cholinergic and beta-adrenergic agonists. Mills CL; Dormer RL; McPherson MA FEBS Lett; 1991 Sep; 289(2):141-4. PubMed ID: 1915837 [TBL] [Abstract][Full Text] [Related]
8. Desensitization of mucin secretion from rat submandibular tissues in response to isoproterenol. Ishikawa Y; Amano I; Ishida H Dent Jpn (Tokyo); 1990; 27(1):51-6. PubMed ID: 1965961 [TBL] [Abstract][Full Text] [Related]
9. Role of cyclic AMP-dependent protein kinase activation in regulating rat submandibular mucin secretion. Quissell DO; Barzen KA; Deisher LM Biochim Biophys Acta; 1983 Apr; 762(2):215-20. PubMed ID: 6299386 [TBL] [Abstract][Full Text] [Related]
10. Actions of adenosine A1 and A2 receptor antagonists on CFTR antibody-inhibited beta-adrenergic mucin secretion response. Pereira MM; Lloyd Mills C; Dormer RL; McPherson MA Br J Pharmacol; 1998 Oct; 125(4):697-704. PubMed ID: 9831904 [TBL] [Abstract][Full Text] [Related]
11. Evidence for reduced beta-adrenoceptor coupling to adenylate cyclase in femoral arteries from spontaneously hypertensive rats. Asano M; Masuzawa K; Matsuda T Br J Pharmacol; 1988 May; 94(1):73-86. PubMed ID: 2456812 [TBL] [Abstract][Full Text] [Related]
12. Clonidine inhibits the isoproterenol-induced desensitization of the beta noradrenergic activated adenylate cyclase system in astrocytes. Northam WJ; Mobley PL Psychopharmacology (Berl); 1987; 93(3):324-8. PubMed ID: 2448841 [TBL] [Abstract][Full Text] [Related]
13. Adrenergic regulation of formation of inositol phosphates in rat submandibular acini. Doughney C; Dormer RL; McPherson MA Biochem J; 1987 Feb; 241(3):705-9. PubMed ID: 3593218 [TBL] [Abstract][Full Text] [Related]
14. Beta-adrenergic receptor mechanisms in rat parotid glands: activation by nerve stimulation and 3-isobutyl-1-methylxanthine. Fuller CM; Gallacher DV J Physiol; 1984 Nov; 356():335-48. PubMed ID: 6084058 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of isoproterenol-induced heterologous desensitization of mucin secretion from rat submandibular glands. Regulation of phosphorylation of Gi proteins controls the cell response to the subsequent stimulation. Ishikawa Y; Amano I; Eguchi T; Ishida H Biochim Biophys Acta; 1995 Mar; 1265(2-3):173-80. PubMed ID: 7696346 [TBL] [Abstract][Full Text] [Related]
16. An antibody against a CFTR-derived synthetic peptide, incorporated into living submandibular cells, inhibits beta-adrenergic stimulation of mucin secretion. Mills CL; Pereira MM; Dormer RL; McPherson MA Biochem Biophys Res Commun; 1992 Nov; 188(3):1146-52. PubMed ID: 1280131 [TBL] [Abstract][Full Text] [Related]
17. Role of cyclic AMP in the release of noradrenaline from isolated rat atria. Effect of pretreatment with clenbuterol. Kazanietz MG; Enero MA Naunyn Schmiedebergs Arch Pharmacol; 1992 Sep; 346(3):311-4. PubMed ID: 1383833 [TBL] [Abstract][Full Text] [Related]
18. Glucagon-induced refractoriness of hepatocyte adenylate cyclase: comparison of homologous and heterologous components and evidence against a role of cAMP. Refsnes M; Johansen EJ; Christoffersen T Pharmacol Toxicol; 1989 May; 64(5):397-403. PubMed ID: 2475864 [TBL] [Abstract][Full Text] [Related]
19. Beta-adrenergic stimulation and cAMP mobilize Ca2+ from an IP3-insensitive pool in rat submandibular granular ducts. Dehaye JP; Valdez IH; Turner RJ Am J Physiol; 1993 Nov; 265(5 Pt 1):C1356-62. PubMed ID: 7694495 [TBL] [Abstract][Full Text] [Related]
20. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis. Zaremba TG; Fishman PH Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]