These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24567949)

  • 21. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives.
    Ghasemi A; Amiri H; Zare H; Masroor M; Hasanzadeh A; Beyzavi A; Aref AR; Karimi M; Hamblin MR
    Microfluid Nanofluidics; 2017 Sep; 21(9):. PubMed ID: 30881265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current Strategies in Assessment of Nanotoxicity: Alternatives to In Vivo Animal Testing.
    Huang HJ; Lee YH; Hsu YH; Liao CT; Lin YF; Chiu HW
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ mRNA isolation from a microfluidic single-cell array using an external AFM nanoprobe.
    Li X; Tao Y; Lee DH; Wickramasinghe HK; Lee AP
    Lab Chip; 2017 May; 17(9):1635-1644. PubMed ID: 28401227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The heritable effects of nanotoxicity.
    Tortiglione C
    Nanomedicine (Lond); 2014 Dec; 9(18):2829-41. PubMed ID: 25688411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid determination of nanotoxicity using luminous bacteria.
    Zheng H; Liu L; Lu Y; Long Y; Wang L; Ho KP; Wong KY
    Anal Sci; 2010 Jan; 26(1):125-8. PubMed ID: 20065600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Nanomaterials on Biological and Environmental Systems and New Analytical Methods for Improved Detection.
    Reagen S; Zhao JX
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microelectromechanical System-Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy.
    Shah P; Zhu X; Zhang X; He J; Li CZ
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5804-12. PubMed ID: 26860350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Health technology assessment report: Computer-assisted Pap test for cervical cancer screening].
    Della Palma P; Moresco L; Giorgi Rossi P
    Epidemiol Prev; 2012; 36(5 Suppl 3):e1-43. PubMed ID: 23139174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation.
    Yan X; Yue T; Winkler DA; Yin Y; Zhu H; Jiang G; Yan B
    Chem Rev; 2023 Jul; 123(13):8575-8637. PubMed ID: 37262026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanotoxicology: the molecular science point of view.
    Pumera M
    Chem Asian J; 2011 Feb; 6(2):340-8. PubMed ID: 20725923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanotoxicity: a growing need for study in the endocrine system.
    Lu X; Liu Y; Kong X; Lobie PE; Chen C; Zhu T
    Small; 2013 May; 9(9-10):1654-71. PubMed ID: 23401134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review.
    Leonel AG; Mansur AAP; Mansur HS
    Water Res; 2021 Feb; 190():116693. PubMed ID: 33302040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Nanotoxicity with Integrated Omics and Mechanobiology.
    Shin TH; Nithiyanandam S; Lee DY; Kwon DH; Hwang JS; Kim SG; Jang YE; Basith S; Park S; Mo JS; Lee G
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine Learning Models for Predicting Cytotoxicity of Nanomaterials.
    Ji Z; Guo W; Wood EL; Liu J; Sakkiah S; Xu X; Patterson TA; Hong H
    Chem Res Toxicol; 2022 Feb; 35(2):125-139. PubMed ID: 35029374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Balancing nanotoxicity and returns in health applications: The Prisoner's Dilemma.
    Gkika DA; Magafas L; Cool P; Braet J
    Toxicology; 2018 Jan; 393():83-89. PubMed ID: 29127034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of
    Ng CT; Yu LE; Ong CN; Bay BH; Baeg GH
    Nanotoxicology; 2019 May; 13(4):429-446. PubMed ID: 30451554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.