These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24568148)

  • 1. Changes in performance over time while learning to use a myoelectric prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2014 Feb; 11():16. PubMed ID: 24568148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to use a body-powered prosthesis: changes in functionality and kinematics.
    Huinink LH; Bouwsema H; Plettenburg DH; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2016 Oct; 13(1):90. PubMed ID: 27716254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the type of training task on intermanual transfer effects in upper-limb prosthesis training: A randomized pre-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2017; 12(11):e0188362. PubMed ID: 29190727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Inter-Training Intervals on Intermanual Transfer Effects in Upper-Limb Prosthesis Training: A Randomized Pre-Posttest Study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2015; 10(6):e0128747. PubMed ID: 26075396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermanual transfer in training with an upper-limb myoelectric prosthesis simulator: a mechanistic, randomized, pretest-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    Phys Ther; 2013 Jan; 93(1):22-31. PubMed ID: 22976445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of feedback during virtual training of grip force control with a myoelectric prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    PLoS One; 2014; 9(5):e98301. PubMed ID: 24865570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining skill level in myoelectric prosthesis use with multiple outcome measures.
    Bouwsema H; Kyberd PJ; Hill W; van der Sluis CK; Bongers RM
    J Rehabil Res Dev; 2012; 49(9):1331-48. PubMed ID: 23408215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training with an upper-limb prosthetic simulator to enhance transfer of skill across limbs.
    Weeks DL; Wallace SA; Anderson DI
    Arch Phys Med Rehabil; 2003 Mar; 84(3):437-43. PubMed ID: 12638114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of order of practice in learning to handle an upper-limb prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    Arch Phys Med Rehabil; 2008 Sep; 89(9):1759-64. PubMed ID: 18675393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper-Limb Electromyogram Classification of Reaching-to-Grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand.
    Kim KT; Park S; Lim TH; Lee SJ
    Front Neurosci; 2021; 15():733359. PubMed ID: 34712114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Interaction Between Feedback Type and Learning in Routine Grasping With Myoelectric Prostheses.
    Wilke MA; Hartmann C; Schimpf F; Farina D; Dosen S
    IEEE Trans Haptics; 2020; 13(3):645-654. PubMed ID: 31870991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.
    De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D
    Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.
    Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of contralateral hand involvement in the operation of the Delft Self-Grasping Hand, an adjustable passive prosthesis.
    Chadwell A; Chinn N; Kenney L; Karthaus ZJ; Mos D; Smit G
    PLoS One; 2021; 16(6):e0252870. PubMed ID: 34138903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of mirror therapy and motor imagery on intermanual transfer effects in upper-limb prosthesis training of healthy participants: A randomized pre-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2018; 13(10):e0204839. PubMed ID: 30300378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermanual transfer effect in young children after training in a complex skill: mechanistic, pseudorandomized, pretest-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    Phys Ther; 2015 May; 95(5):730-9. PubMed ID: 25504483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.
    van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM
    PLoS One; 2016; 11(8):e0160817. PubMed ID: 27556154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual attention, EEG alpha power and T7-Fz connectivity are implicated in prosthetic hand control and can be optimized through gaze training.
    Parr JVV; Vine SJ; Wilson MR; Harrison NR; Wood G
    J Neuroeng Rehabil; 2019 Apr; 16(1):52. PubMed ID: 31029174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.