These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24568175)

  • 1. Quantitative analysis of human ankle characteristics at different gait phases and speeds for utilizing in ankle-foot prosthetic design.
    Safaeepour Z; Esteki A; Ghomshe FT; Abu Osman NA
    Biomed Eng Online; 2014 Feb; 13(1):19. PubMed ID: 24568175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.
    Kobayashi T; Singer ML; Orendurff MS; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):775-80. PubMed ID: 26149007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait.
    Major MJ; Twiste M; Kenney LP; Howard D
    Clin Biomech (Bristol, Avon); 2014 Jan; 29(1):98-104. PubMed ID: 24238976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping.
    De Asha AR; Munjal R; Kulkarni J; Buckley JG
    J Neuroeng Rehabil; 2013 Oct; 10():107. PubMed ID: 24134803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of an articulated ankle-foot orthosis with resistance-adjustable joints on lower limb joint kinematics and kinetics during gait in individuals post-stroke.
    Kobayashi T; Orendurff MS; Hunt G; Gao F; LeCursi N; Lincoln LS; Foreman KB
    Clin Biomech (Bristol, Avon); 2018 Nov; 59():47-55. PubMed ID: 30145413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task dependent changes in mechanical and biomechanical measures result from manipulating stiffness settings in a prosthetic foot.
    Ármannsdóttir AL; Lecomte C; Brynjólfsson S; Briem K
    Clin Biomech (Bristol, Avon); 2021 Oct; 89():105476. PubMed ID: 34517194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Existing Methods for Characterizing Bi-Linear Natural Ankle Quasi-Stiffness.
    Nigro L; Arch ES
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35698872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human ankle during walking: implications for design of biomimetic ankle prostheses.
    Hansen AH; Childress DS; Miff SC; Gard SA; Mesplay KP
    J Biomech; 2004 Oct; 37(10):1467-74. PubMed ID: 15336920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking.
    Shamaei K; Sawicki GS; Dollar AM
    PLoS One; 2013; 8(3):e59935. PubMed ID: 23555839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.
    Rábago CA; Aldridge Whitehead J; Wilken JM
    PLoS One; 2016; 11(12):e0166815. PubMed ID: 27977681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic joint stiffness of the ankle in chronic ankle instability patients.
    Jang J; Song K; Wikstrom EA
    Gait Posture; 2021 May; 86():199-204. PubMed ID: 33756409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal plane pelvis and hip kinematics of transfemoral amputee gait. Effect of a prosthetic foot with active ankle dorsiflexion and individualized training - a case study.
    Armannsdottir A; Tranberg R; Halldorsdottir G; Briem K
    Disabil Rehabil Assist Technol; 2018 May; 13(4):388-393. PubMed ID: 28974119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of ankle stiffness on mechanics and energetics of walking with added loads: a prosthetic emulator study.
    Hedrick EA; Malcolm P; Wilken JM; Takahashi KZ
    J Neuroeng Rehabil; 2019 Nov; 16(1):148. PubMed ID: 31752942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study of transtibial amputee walking using a powered prosthetic foot.
    Grimmer M; Holgate M; Ward J; Boehler A; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1118-1123. PubMed ID: 28813971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of genu recurvatum through adjustment of plantarflexion resistance of an articulated ankle-foot orthosis in individuals post-stroke.
    Kobayashi T; Orendurff MS; Singer ML; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2016 Jun; 35():81-5. PubMed ID: 27136122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of a powered ankle-foot prosthesis based on a neuromuscular model.
    Eilenberg MF; Geyer H; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):164-73. PubMed ID: 20071268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
    Takahashi KZ; Lewek MD; Sawicki GS
    J Neuroeng Rehabil; 2015 Feb; 12():23. PubMed ID: 25889283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.