These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24568276)

  • 1. Microfabricated nerve-electrode interfaces in neural prosthetics and neural engineering.
    Song YA; Ibrahim AM; Rabie AN; Han J; Lin SJ
    Biotechnol Genet Eng Rev; 2013; 29():113-34. PubMed ID: 24568276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic neural probes: in vivo tools for advancing neuroscience.
    Sim JY; Haney MP; Park SI; McCall JG; Jeong JW
    Lab Chip; 2017 Apr; 17(8):1406-1435. PubMed ID: 28349140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing.
    Kim H; Dingle AM; Ness JP; Baek DH; Bong J; Lee IK; Shulzhenko NO; Zeng W; Israel JS; Pisaniello JA; Millevolte AXT; Park DW; Suminski AJ; Jung YH; Williams JC; Poore SO; Ma Z
    J Neurosci Methods; 2020 Apr; 336():108602. PubMed ID: 31981569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an intrafascicular neural interface for peripheral nerve implantation.
    Chou N; Kang Y; Kang HS; Yun JD; Chun W; Lee KJ; Moon H; Choi IK; Byun D; Song I; Moon DJ; Moon JH; Lee BH; Kim J; You SK; Kim S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():847-850. PubMed ID: 28813926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute in vivo testing of a polymer cuff electrode with integrated microfluidic channels for stimulation, recording, and drug delivery on rat sciatic nerve.
    Elyahoodayan S; Larson C; Cobo AM; Meng E; Song D
    J Neurosci Methods; 2020 Apr; 336():108634. PubMed ID: 32068010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabricated reference electrodes and their biosensing applications.
    Shinwari MW; Zhitomirsky D; Deen IA; Selvaganapathy PR; Deen MJ; Landheer D
    Sensors (Basel); 2010; 10(3):1679-715. PubMed ID: 22294894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regenerative Electrode Interfaces for Neural Prostheses.
    Thompson CH; Zoratti MJ; Langhals NB; Purcell EK
    Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies.
    Normann RA; Fernandez E
    J Neural Eng; 2016 Dec; 13(6):061003. PubMed ID: 27762237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A translational framework for peripheral nerve stimulating electrodes: Reviewing the journey from concept to clinic.
    Charkhkar H; Christie BP; Pinault GJ; Tyler DJ; Triolo RJ
    J Neurosci Methods; 2019 Dec; 328():108414. PubMed ID: 31472187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in neural dust: towards a neural interface platform.
    Neely RM; Piech DK; Santacruz SR; Maharbiz MM; Carmena JM
    Curr Opin Neurobiol; 2018 Jun; 50():64-71. PubMed ID: 29331738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective electrical interfaces with the nervous system.
    Rutten WL
    Annu Rev Biomed Eng; 2002; 4():407-52. PubMed ID: 12117764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface.
    Yoo S; Kim R; Park JH; Nam Y
    ACS Nano; 2016 Apr; 10(4):4274-81. PubMed ID: 26960013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation.
    Lee JH; Kim H; Kim JH; Lee SH
    Lab Chip; 2016 Mar; 16(6):959-76. PubMed ID: 26891410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated polymer-based neural interface for electrical stimulation/recording, drug delivery, and chemical sensing--development.
    Tooker A; Madsen TE; Yorita A; Crowell A; Shah KG; Felix S; Mayberg HS; Pannu S; Rainnie DG; Tolosa V
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5159-62. PubMed ID: 24110897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural probes--microsystems to interface with the brain.
    Stieglitz T; Neves H; Ruther P
    Biomed Tech (Berl); 2014 Aug; 59(4):269-71. PubMed ID: 25153207
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.