BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24568276)

  • 21. A microsystem integration platform dedicated to build multi-chip-neural interfaces.
    Ayoub AE; Gosselin B; Sawan M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6605-8. PubMed ID: 18003539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection.
    Kim JH; Kang CJ; Kim YS
    Biosens Bioelectron; 2005 May; 20(11):2314-7. PubMed ID: 15797332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human.
    Aflalo T; Kellis S; Klaes C; Lee B; Shi Y; Pejsa K; Shanfield K; Hayes-Jackson S; Aisen M; Heck C; Liu C; Andersen RA
    Science; 2015 May; 348(6237):906-10. PubMed ID: 25999506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".
    Kirsch RF; Ajiboye AB; Miller JP
    J Med Internet Res; 2019 Oct; 21(10):e16339. PubMed ID: 31674921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfabricated on-chip integrated Au-Ag-Au three-electrode system for in situ mercury ion determination.
    Chen C; Zhang J; Du Y; Yang X; Wang E
    Analyst; 2010 May; 135(5):1010-4. PubMed ID: 20419250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording.
    Lewitus D; Vogelstein RJ; Zhen G; Choi YS; Kohn J; Harshbarger S; Jia X
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):204-12. PubMed ID: 21147598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implantable Graphene-based Neural Electrode Interfaces for Electrophysiology and Neurochemistry in In Vivo Hyperacute Stroke Model.
    Liu TC; Chuang MC; Chu CY; Huang WC; Lai HY; Wang CT; Chu WL; Chen SY; Chen YY
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):187-96. PubMed ID: 26653098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability.
    Luan L; Robinson JT; Aazhang B; Chi T; Yang K; Li X; Rathore H; Singer A; Yellapantula S; Fan Y; Yu Z; Xie C
    Neuron; 2020 Oct; 108(2):302-321. PubMed ID: 33120025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced electrochemical potential monitoring for improved understanding of electrical neurostimulation protocols.
    Doering M; Kieninger J; Kübler J; Hofmann UG; Rupitsch SJ; Urban GA; Weltin A
    J Neural Eng; 2023 Jun; 20(3):. PubMed ID: 37307808
    [No Abstract]   [Full Text] [Related]  

  • 32. Regenerative scaffold electrodes for peripheral nerve interfacing.
    Clements IP; Mukhatyar VJ; Srinivasan A; Bentley JT; Andreasen DS; Bellamkonda RV
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):554-66. PubMed ID: 23033438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface.
    Luo J; Xue N; Chen J
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of organic and inorganic biomaterials for neural interfaces.
    Fattahi P; Yang G; Kim G; Abidian MR
    Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfaces with the peripheral nerve for the control of neuroprostheses.
    del Valle J; Navarro X
    Int Rev Neurobiol; 2013; 109():63-83. PubMed ID: 24093606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research.
    Anderson DJ
    Hear Res; 2008 Aug; 242(1-2):31-41. PubMed ID: 18343062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Evolution of Neuroprosthetic Interfaces.
    Adewole DO; Serruya MD; Harris JP; Burrell JC; Petrov D; Chen HI; Wolf JA; Cullen DK
    Crit Rev Biomed Eng; 2016; 44(1-2):123-52. PubMed ID: 27652455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers.
    Gribi S; du Bois de Dunilac S; Ghezzi D; Lacour SP
    Nat Commun; 2018 Oct; 9(1):4403. PubMed ID: 30353009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microengineered neural probes for in vivo recording.
    Valles KD
    Methods Mol Biol; 2010; 583():135-48. PubMed ID: 19763463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural engineering--a new discipline for analyzing and interacting with the nervous system.
    Durand DM
    Methods Inf Med; 2007; 46(2):142-6. PubMed ID: 17347744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.