These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24568276)

  • 61. Silicon microfabrication technologies for biology integrated advance devices and interfaces.
    Juska VB; Maxwell G; Estrela P; Pemble ME; O'Riordan A
    Biosens Bioelectron; 2023 Oct; 237():115503. PubMed ID: 37481868
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Connection Between the Nervous System and Machines: Commentary.
    Valle G
    J Med Internet Res; 2019 Nov; 21(11):e16344. PubMed ID: 31692449
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An integrated interface for peripheral neural system recording and stimulation: system design, electrical tests and in-vivo results.
    Carboni C; Bisoni L; Carta N; Puddu R; Raspopovic S; Navarro X; Raffo L; Barbaro M
    Biomed Microdevices; 2016 Apr; 18(2):35. PubMed ID: 27007860
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Future of Neural Interfaces.
    Laiwalla F; Nurmikko A
    Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of optically controlled "living electrodes" with long-projecting axon tracts for a synaptic brain-machine interface.
    Adewole DO; Struzyna LA; Burrell JC; Harris JP; Nemes AD; Petrov D; Kraft RH; Chen HI; Serruya MD; Wolf JA; Cullen DK
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523957
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording.
    Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrochemical and Electrophysiological Performance of Platinum Electrodes Within the Ninety-Nine-Electrode Stimulating Nerve Cuff.
    Pečlin P; Mehle A; Karpe B; Rozman J
    Artif Organs; 2015 Oct; 39(10):886-96. PubMed ID: 26471140
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Paper-based electroanalytical devices with an integrated, stable reference electrode.
    Lan WJ; Maxwell EJ; Parolo C; Bwambok DK; Subramaniam AB; Whitesides GM
    Lab Chip; 2013 Oct; 13(20):4103-8. PubMed ID: 23969547
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications.
    Mogensen KB; Gangloff L; Boggild P; Teo KB; Milne WI; Kutter JP
    Nanotechnology; 2009 Mar; 20(9):095503. PubMed ID: 19417490
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Poly(3,4-ethylenedioxythiophene)/multiwall carbon nanotube composite coatings for improving the stability of microelectrodes in neural prostheses applications.
    Zhou H; Cheng X; Rao L; Li T; Duan YY
    Acta Biomater; 2013 May; 9(5):6439-49. PubMed ID: 23402765
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform.
    Leber M; Körner J; Reiche CF; Yin M; Bhandari R; Franklin R; Negi S; Solzbacher F
    Adv Exp Med Biol; 2019; 1101():1-40. PubMed ID: 31729670
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bacterial Cellulose as a Supersoft Neural Interfacing Substrate.
    Yang J; Du M; Wang L; Li S; Wang G; Yang X; Zhang L; Fang Y; Zheng W; Yang G; Jiang X
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33049-33059. PubMed ID: 30208275
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments.
    Xu X; Zhang S; Chen H; Kong J
    Talanta; 2009 Nov; 80(1):8-18. PubMed ID: 19782186
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Flexible carbon nanotubes electrode for neural recording.
    Lin CM; Lee YT; Yeh SR; Fang W
    Biosens Bioelectron; 2009 May; 24(9):2791-7. PubMed ID: 19272765
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.
    Shaeri MA; Sodagar AM
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):485-97. PubMed ID: 25222949
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In situ stability monitoring of platinum thin-film electrodes for neural interfaces in the presence of proteins.
    Doering M; Kieninger J; Urban GA; Weltin A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1577-1580. PubMed ID: 36083919
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Closing the Loop in Deep Brain Stimulation for Psychiatric Disorders: Lessons from Motor Neural Prosthetics.
    Widge AS; Sahay A
    Neuropsychopharmacology; 2016 Jan; 41(1):379-80. PubMed ID: 26657958
    [No Abstract]   [Full Text] [Related]  

  • 78. Microchannel neural interface manufacture by stacking silicone and metal foil laminae.
    Lancashire HT; Vanhoestenberghe A; Pendegrass CJ; Ajam YA; Magee E; Donaldson N; Blunn GW
    J Neural Eng; 2016 Jun; 13(3):034001. PubMed ID: 27001943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining.
    McCarthy PT; Otto KJ; Rao MP
    Biomed Microdevices; 2011 Jun; 13(3):503-15. PubMed ID: 21360044
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography.
    Kellis S; Sorensen L; Darvas F; Sayres C; O'Neill K; Brown RB; House P; Ojemann J; Greger B
    Clin Neurophysiol; 2016 Jan; 127(1):591-601. PubMed ID: 26138146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.