These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 24568316)
1. Cytocompatibility of novel extracellular matrix protein analogs of biodegradable polyester polymers derived from α-hydroxy amino acids. Lecht S; Cohen-Arazi N; Cohen G; Ettinger K; Momic T; Kolitz M; Naamneh M; Katzhendler J; Domb AJ; Lazarovici P; Lelkes PI J Biomater Sci Polym Ed; 2014; 25(6):608-24. PubMed ID: 24568316 [TBL] [Abstract][Full Text] [Related]
2. Surface engineering of poly(D,L-lactic acid) by entrapment of chitosan-based derivatives for the promotion of chondrogenesis. Zhu H; Ji J; Lin R; Gao C; Feng L; Shen J J Biomed Mater Res; 2002 Dec; 62(4):532-9. PubMed ID: 12221701 [TBL] [Abstract][Full Text] [Related]
3. Surface engineering of poly(DL-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis. Zhu H; Ji J; Lin R; Gao C; Feng L; Shen J Biomaterials; 2002 Aug; 23(15):3141-8. PubMed ID: 12102185 [TBL] [Abstract][Full Text] [Related]
4. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Valmikinathan CM; Defroda S; Yu X Biomacromolecules; 2009 May; 10(5):1084-9. PubMed ID: 19323510 [TBL] [Abstract][Full Text] [Related]
6. NGF release from thermo-responsive collagen-polyNIPAam polymer networks supports neuronal cell growth and differentiation. Doleski S; Yao L; Pandit A; Elvira C J Biomed Mater Res A; 2010 Aug; 94(2):457-65. PubMed ID: 20205237 [TBL] [Abstract][Full Text] [Related]
7. Colonization and maintenance of murine embryonic stem cells on poly(alpha-hydroxy esters). Harrison J; Pattanawong S; Forsythe JS; Gross KA; Nisbet DR; Beh H; Scott TF; Trounson AO; Mollard R Biomaterials; 2004 Sep; 25(20):4963-70. PubMed ID: 15109857 [TBL] [Abstract][Full Text] [Related]
8. Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine. Cao J; Chen YW; Wang X; Luo XL J Biomed Mater Res A; 2011 Jun; 97(4):472-9. PubMed ID: 21495169 [TBL] [Abstract][Full Text] [Related]
9. In vitro biocompatibility of different polyester membranes. Vaquette C; Fawzi-Grancher S; Lavalle P; Frochot C; Viriot ML; Muller S; Wang X Biomed Mater Eng; 2006; 16(4 Suppl):S131-6. PubMed ID: 16823104 [TBL] [Abstract][Full Text] [Related]
10. Surface engineering of poly(D,L-lactic acid) by entrapment of soluble eggshell membrane protein. Lu JW; Li Q; Qi QL; Guo ZX; Yu J J Biomed Mater Res A; 2009 Dec; 91(3):701-7. PubMed ID: 19048638 [TBL] [Abstract][Full Text] [Related]
11. The effect of acetylcholine-like biomimetic polymers on neuronal growth. Tu Q; Li L; Zhang Y; Wang J; Liu R; Li M; Liu W; Wang X; Ren L; Wang J Biomaterials; 2011 Apr; 32(12):3253-64. PubMed ID: 21303719 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
13. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonate-based macromers. Sharifi S; Imani M; Mirzadeh H; Atai M; Ziaee F; Bakhshi R J Biomed Mater Res A; 2009 Sep; 90(3):830-43. PubMed ID: 18615464 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility. Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of functional polyester for fabrication of nano-fibrous scaffolds and its effect on PC12 cells. Qiang N; Tang S; Shi XJ; Li H; Ma YH; Tao HX; Lin Q J Biomater Sci Polym Ed; 2016; 27(3):191-201. PubMed ID: 26514960 [TBL] [Abstract][Full Text] [Related]
17. Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid. Basu A; Kunduru KR; Katzhendler J; Domb AJ Adv Drug Deliv Rev; 2016 Dec; 107():82-96. PubMed ID: 27527666 [TBL] [Abstract][Full Text] [Related]
18. Modification of polymer networks with bone sialoprotein promotes cell attachment and spreading. Chan WD; Goldberg HA; Hunter GK; Dixon SJ; Rizkalla AS J Biomed Mater Res A; 2010 Sep; 94(3):945-52. PubMed ID: 20730931 [TBL] [Abstract][Full Text] [Related]
19. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering. Cortizo MS; Molinuevo MS; Cortizo AM J Tissue Eng Regen Med; 2008 Jan; 2(1):33-42. PubMed ID: 18273918 [TBL] [Abstract][Full Text] [Related]
20. Rapid hepatic cell attachment onto biodegradable polymer surfaces without toxicity using an avidin-biotin binding system. Kojima N; Matsuo T; Sakai Y Biomaterials; 2006 Oct; 27(28):4904-10. PubMed ID: 16759691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]