BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24568570)

  • 1. Evaluation of hydrogen-bond acceptors for redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Milić J; Kolarski D; Gropp C; Schweizer WB; Diederich F
    J Am Chem Soc; 2014 Mar; 136(10):3852-8. PubMed ID: 24568570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Diederich F
    Acc Chem Res; 2014 Jul; 47(7):2096-105. PubMed ID: 24814219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational behavior of pyrazine-bridged and mixed-bridged cavitands: a general model for solvent effects on thermal "vase-kite" switching.
    Roncucci P; Pirondini L; Paderni G; Massera C; Dalcanale E; Azov VA; Diederich F
    Chemistry; 2006 Jun; 12(18):4775-84. PubMed ID: 16671048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-switchable resorcin[4]arene cavitands: molecular grippers.
    Pochorovski I; Ebert MO; Gisselbrecht JP; Boudon C; Schweizer WB; Diederich F
    J Am Chem Soc; 2012 Sep; 134(36):14702-5. PubMed ID: 22906195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET studies on a series of BODIPY-dye-labeled switchable resorcin[4]arene cavitands.
    Pochorovski I; Breiten B; Schweizer WB; Diederich F
    Chemistry; 2010 Nov; 16(42):12590-602. PubMed ID: 20865704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cycloalkane and alicyclic heterocycle complexation by new switchable resorcin[4]arene-based container molecules: NMR and ITC binding studies.
    Hornung J; Fankhauser D; Shirtcliff LD; Praetorius A; Schweizer WB; Diederich F
    Chemistry; 2011 Oct; 17(44):12362-71. PubMed ID: 21938749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn(II)-induced conformational control of amphiphilic cavitands in langmuir monolayers.
    Frei M; Marotti F; Diederich F
    Chem Commun (Camb); 2004 Jun; (12):1362-3. PubMed ID: 15179465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-Responsive Resorcin[4]arene Cavitands: Toward Visible-Light-Activated Molecular Grippers.
    García-López V; Zalibera M; Trapp N; Kuss-Petermann M; Wenger OS; Diederich F
    Chemistry; 2020 Sep; 26(50):11451-11461. PubMed ID: 32780914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding.
    Milić J; Zalibera M; Talaat D; Nomrowski J; Trapp N; Ruhlmann L; Boudon C; Wenger OS; Savitsky A; Lubitz W; Diederich F
    Chemistry; 2018 Jan; 24(6):1431-1440. PubMed ID: 29251363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, structure, and binding properties of lipophilic cavitands based on a calix[4]pyrrole-resorcinarene hybrid scaffold.
    Galán A; Escudero-Adán EC; Frontera A; Ballester P
    J Org Chem; 2014 Jun; 79(12):5545-57. PubMed ID: 24846099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larger Substituents on Amide Cavitands Induce Bigger Cavities.
    Aroua S; Lowell AN; Ray A; Trapp N; Schweizer WB; Ebert MO; Yamakoshi Y
    Org Lett; 2019 Jan; 21(1):201-205. PubMed ID: 30565950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Tetraferrocenyl-Resorcinarene Cavitand as a Redox-Switchable Host of Ammonium Salts.
    Ruiz-Botella S; Vidossich P; Ujaque G; Vicent C; Peris E
    Chemistry; 2015 Jul; 21(29):10558-65. PubMed ID: 26096342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition with metallo cavitands.
    Rahman FU; Li YS; Petsalakis ID; Theodorakopoulos G; Rebek J; Yu Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17648-17653. PubMed ID: 31427538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-switching and self-inclusion of functional cavitands.
    Amrhein P; Shivanyuk A; Johnson DW; Rebek J
    J Am Chem Soc; 2002 Sep; 124(35):10349-58. PubMed ID: 12197737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches.
    Milić J; Zalibera M; Pochorovski I; Trapp N; Nomrowski J; Neshchadin D; Ruhlmann L; Boudon C; Wenger OS; Savitsky A; Lubitz W; Gescheidt G; Diederich F
    J Phys Chem Lett; 2016 Jul; 7(13):2470-7. PubMed ID: 27300355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-manipulated guest binding and signaling of a fluorescent resorcin[4]arene cavitand with 1,3,2-benzodiazaboryl D-π-A conjugation flaps.
    Otsuka K; Kondo T; Nishiyabu R; Kubo Y
    J Org Chem; 2013 Jun; 78(11):5782-7. PubMed ID: 23668321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and computational study of BODIPY dye-labeled cavitand dynamics.
    Pochorovski I; Knehans T; Nettels D; Müller AM; Schweizer WB; Caflisch A; Schuler B; Diederich F
    J Am Chem Soc; 2014 Feb; 136(6):2441-9. PubMed ID: 24490940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigid tetraarylene-bridged cavitands from reduced-symmetry resorcin[4]arene derivatives.
    Smith JN; Lucas NT
    Chem Commun (Camb); 2018 May; 54(37):4716-4719. PubMed ID: 29683182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation.
    Gropp C; Quigley BL; Diederich F
    J Am Chem Soc; 2018 Feb; 140(8):2705-2717. PubMed ID: 29451782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigidified Cavitand Hosts in Water: Bent Guests, Shape Selectivity, and Encapsulation.
    Yang JM; Chen YQ; Yu Y; Ballester P; Rebek J
    J Am Chem Soc; 2021 Nov; 143(46):19517-19524. PubMed ID: 34762414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.