These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The Clostridium difficile spo0A gene is a persistence and transmission factor. Deakin LJ; Clare S; Fagan RP; Dawson LF; Pickard DJ; West MR; Wren BW; Fairweather NF; Dougan G; Lawley TD Infect Immun; 2012 Aug; 80(8):2704-11. PubMed ID: 22615253 [TBL] [Abstract][Full Text] [Related]
4. Identification of Functional Spo0A Residues Critical for Sporulation in Clostridioides difficile. DiCandia MA; Edwards AN; Jones JB; Swaim GL; Mills BD; McBride SM J Mol Biol; 2022 Jul; 434(13):167641. PubMed ID: 35597553 [TBL] [Abstract][Full Text] [Related]
5. A conserved switch controls virulence, sporulation, and motility in C. difficile. DiCandia MA; Edwards AN; Alcaraz YB; Monteiro MP; Lee CD; Vargas Cuebas G; Bagchi P; McBride SM PLoS Pathog; 2024 May; 20(5):e1012224. PubMed ID: 38739653 [TBL] [Abstract][Full Text] [Related]
6. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. Rosenbusch KE; Bakker D; Kuijper EJ; Smits WK PLoS One; 2012; 7(10):e48608. PubMed ID: 23119071 [TBL] [Abstract][Full Text] [Related]
7. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. Saujet L; Monot M; Dupuy B; Soutourina O; Martin-Verstraete I J Bacteriol; 2011 Jul; 193(13):3186-96. PubMed ID: 21572003 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. Underwood S; Guan S; Vijayasubhash V; Baines SD; Graham L; Lewis RJ; Wilcox MH; Stephenson K J Bacteriol; 2009 Dec; 191(23):7296-305. PubMed ID: 19783633 [TBL] [Abstract][Full Text] [Related]
10. The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile. Childress KO; Edwards AN; Nawrocki KL; Anderson SE; Woods EC; McBride SM Infect Immun; 2016 Dec; 84(12):3434-3444. PubMed ID: 27647869 [TBL] [Abstract][Full Text] [Related]
11. Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Janoir C; Denève C; Bouttier S; Barbut F; Hoys S; Caleechum L; Chapetón-Montes D; Pereira FC; Henriques AO; Collignon A; Monot M; Dupuy B Infect Immun; 2013 Oct; 81(10):3757-69. PubMed ID: 23897605 [TBL] [Abstract][Full Text] [Related]
13. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile. Mackin KE; Carter GP; Howarth P; Rood JI; Lyras D PLoS One; 2013; 8(11):e79666. PubMed ID: 24236153 [TBL] [Abstract][Full Text] [Related]
14. Global analysis of the sporulation pathway of Clostridium difficile. Fimlaid KA; Bond JP; Schutz KC; Putnam EE; Leung JM; Lawley TD; Shen A PLoS Genet; 2013; 9(8):e1003660. PubMed ID: 23950727 [TBL] [Abstract][Full Text] [Related]
15. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354 [TBL] [Abstract][Full Text] [Related]
16. A network of small RNAs regulates sporulation initiation in Clostridioides difficile. Fuchs M; Lamm-Schmidt V; Lenče T; Sulzer J; Bublitz A; Wackenreuter J; Gerovac M; Strowig T; Faber F EMBO J; 2023 Jun; 42(12):e112858. PubMed ID: 37140366 [TBL] [Abstract][Full Text] [Related]
17. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Antunes A; Camiade E; Monot M; Courtois E; Barbut F; Sernova NV; Rodionov DA; Martin-Verstraete I; Dupuy B Nucleic Acids Res; 2012 Nov; 40(21):10701-18. PubMed ID: 22989714 [TBL] [Abstract][Full Text] [Related]
18. Regulatory Targets of the Response Regulator RR_1586 from Clostridioides difficile Identified Using a Bacterial One-Hybrid Screen. Hebdon SD; Menon SK; Richter-Addo GB; Karr EA; West AH J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30201779 [TBL] [Abstract][Full Text] [Related]
19. Initiation of sporulation in Clostridium difficile: a twist on the classic model. Edwards AN; McBride SM FEMS Microbiol Lett; 2014 Sep; 358(2):110-8. PubMed ID: 24910370 [TBL] [Abstract][Full Text] [Related]
20. Identification of ClpP Dual Isoform Disruption as an Antisporulation Strategy for Clostridioides difficile. Bishop CE; Shadid TM; Lavey NP; Kempher ML; Ballard JD; Duerfeldt AS J Bacteriol; 2022 Feb; 204(2):e0041121. PubMed ID: 34807726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]