These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24569007)

  • 21. The sampling of ignitable liquids on suspects' hands.
    Montani I; Comment S; Delémont O
    Forensic Sci Int; 2010 Jan; 194(1-3):115-24. PubMed ID: 19954905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography.
    Frysinger GS; Gaines RB
    J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.
    Nowlan M; Stuart AW; Basara GJ; Sandercock PM
    J Forensic Sci; 2007 May; 52(3):643-8. PubMed ID: 17397503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sampling and recovery of ignitable liquid residues (ILRs) from fire debris using capillary microextraction of volatiles (CMV) for on-site analysis.
    Valdes NB; Almirall JR
    J Forensic Sci; 2023 Mar; 68(2):629-637. PubMed ID: 36715133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics.
    Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The detection and analysis of ignitable liquid residues extracted from human skin using SPME/GC.
    Almirall JR; Wang J; Lothridge K; Furton KG
    J Forensic Sci; 2000 Mar; 45(2):453-61. PubMed ID: 10782973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preserving ignitable liquid residues on soil using Triclosan as an anti-microbial agent.
    Turner DA; Goodpaster JV
    Forensic Sci Int; 2014 Jun; 239():86-91. PubMed ID: 24769222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovery of oxygenated ignitable liquids by zeolites, Part II: Dual-mode heated passive headspace extraction.
    Rodgers CL; St Pierre KA; Hall AB
    Forensic Sci Int; 2014 Jul; 240():144-50. PubMed ID: 24811978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of volatiles in fire debris by combination of activated charcoal strips (ACS) and automated thermal desorption-gas chromatography-mass spectrometry (ATD/GC-MS).
    Martin Fabritius M; Broillet A; König S; Weinmann W
    Forensic Sci Int; 2018 Aug; 289():232-237. PubMed ID: 29908516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GC-MS of ignitable liquids using solvent-desorbed SPME for automated analysis.
    Harris AC; Wheeler JF
    J Forensic Sci; 2003 Jan; 48(1):41-6. PubMed ID: 12570197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of evaporation and matrix interferences on the association of simulated ignitable liquid residues to the corresponding liquid standard.
    Prather KR; McGuffin VL; Waddell Smith R
    Forensic Sci Int; 2012 Oct; 222(1-3):242-51. PubMed ID: 22727574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using Alkylate Components for Classifying Gasoline in Fire Debris Samples.
    Peschier LJC; Grutters MMP; Hendrikse JN
    J Forensic Sci; 2018 Mar; 63(2):420-430. PubMed ID: 28556928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of F-500 Encapsulator Agent on canine alerts and laboratory analysis using passive headspace concentration and gas chromatography-mass spectrometry.
    Schwenk L; Evans MR; Crawford S; Shirkey J
    Forensic Sci Int; 2024 Jul; 362():112168. PubMed ID: 39067178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extraction and concentration of vapors from fire debris for forensic purposes: evaluation of the use of Radiello Passive Air Sampler.
    Baechler S; Comment S; Delémont O
    Talanta; 2010 Sep; 82(4):1247-53. PubMed ID: 20801325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of microbial degradation on ignitable liquids.
    Turner DA; Goodpaster JV
    Anal Bioanal Chem; 2009 May; 394(1):363-71. PubMed ID: 19205675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic vapor microextraction of ignitable liquid from casework containers.
    Berry JL; Gregg ME; Friss AJ; Koepke AA; Suiter CL; Newman R; Harries ME; Jeerage KM
    Forensic Sci Int; 2022 Jul; 336():111315. PubMed ID: 35504094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acid alteration of several ignitable liquids of potential use in arsons.
    Martín-Alberca C; Carrascosa H; San Román I; Bartolomé L; García-Ruiz C
    Sci Justice; 2018 Jan; 58(1):7-16. PubMed ID: 29332697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science.
    de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN
    Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.